Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.70 +/- 0.17
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d8033690f5d0d4ec4aa2b9efd1559ce28b32c62716459bc1d89eb79564096ae
|
3 |
+
size 108028
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f422c7fb820>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f422c7fadc0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1679479548010727190,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIUzlPpl6yLpwMgs/IUzlPpl6yLpwMgs/IUzlPpl6yLpwMgs/IUzlPpl6yLpwMgs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzqjJPy3tLr8K76I/V699P6Hqr75vO9M/bavUv6KfA78lA44/RN2KPwcEoj9B3Gy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAhTOU+mXrIunAyCz+GEkY881eUulghBDwhTOU+mXrIunAyCz+GEkY881eUulghBDwhTOU+mXrIunAyCz+GEkY881eUulghBDwhTOU+mXrIunAyCz+GEkY881eUulghBDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.44784644 -0.00152953 0.54373837]\n [ 0.44784644 -0.00152953 0.54373837]\n [ 0.44784644 -0.00152953 0.54373837]\n [ 0.44784644 -0.00152953 0.54373837]]",
|
60 |
+
"desired_goal": "[[ 1.575464 -0.6833065 1.2729199 ]\n [ 0.9909567 -0.34358695 1.6502513 ]\n [-1.6614815 -0.51415455 1.109471 ]\n [ 1.0848775 1.2657479 -0.9252358 ]]",
|
61 |
+
"observation": "[[ 0.44784644 -0.00152953 0.54373837 0.01208938 -0.00113177 0.00806459]\n [ 0.44784644 -0.00152953 0.54373837 0.01208938 -0.00113177 0.00806459]\n [ 0.44784644 -0.00152953 0.54373837 0.01208938 -0.00113177 0.00806459]\n [ 0.44784644 -0.00152953 0.54373837 0.01208938 -0.00113177 0.00806459]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAB2yovT0GTz0skAg+aoqTOlTRC74xars9cOPmvfm5oLsjaf89sJm7vSPgmb1B8rQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.0822373 0.05054306 0.13336247]\n [ 0.00112565 -0.13654071 0.09151114]\n [-0.11273849 -0.00490498 0.12471225]\n [-0.09160173 -0.07513454 0.08835269]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2a873Xmi8b+UhpRSlIwBbJRLMowBdJRHQKfK2O801qF1fZQoaAZoCWgPQwieCyO9qF30v5SGlFKUaBVLMmgWR0Cnyfiw0O3EdX2UKGgGaAloD0MIkNrEyf2O5r+UhpRSlGgVSzJoFkdAp8mZokAxSHV9lChoBmgJaA9DCO1mRj8azuS/lIaUUpRoFUsyaBZHQKfJQUYbbUR1fZQoaAZoCWgPQwjiWBe30YDrv5SGlFKUaBVLMmgWR0CnzCtWuHN5dX2UKGgGaAloD0MIU3qmlxiL9b+UhpRSlGgVSzJoFkdAp8tNTDO1OXV9lChoBmgJaA9DCJPgDWlUYPa/lIaUUpRoFUsyaBZHQKfK7y4nWrh1fZQoaAZoCWgPQwjM0k7N5Qbhv5SGlFKUaBVLMmgWR0Cnype0w8GLdX2UKGgGaAloD0MI6/8c5ssL7b+UhpRSlGgVSzJoFkdAp834LsrupnV9lChoBmgJaA9DCGLWi6Gc6Pm/lIaUUpRoFUsyaBZHQKfNGNd7fHh1fZQoaAZoCWgPQwjyI37FGq7lv5SGlFKUaBVLMmgWR0CnzLp0GNaRdX2UKGgGaAloD0MI1/m3y37d6r+UhpRSlGgVSzJoFkdAp8xi6Ymb9nV9lChoBmgJaA9DCFXCE3r9yeK/lIaUUpRoFUsyaBZHQKfPu88La251fZQoaAZoCWgPQwi/mC1ZFWH2v5SGlFKUaBVLMmgWR0Cnzty1eBxxdX2UKGgGaAloD0MIjWK5pdUQ6r+UhpRSlGgVSzJoFkdAp85+kzoECHV9lChoBmgJaA9DCFpHVRNEHfW/lIaUUpRoFUsyaBZHQKfOJymygPF1fZQoaAZoCWgPQwjzrKQV31Dqv5SGlFKUaBVLMmgWR0Cn0ZeEAYHgdX2UKGgGaAloD0MIL0/nilJC7b+UhpRSlGgVSzJoFkdAp9C4YHgP3HV9lChoBmgJaA9DCEzirIiaaOy/lIaUUpRoFUsyaBZHQKfQWmTkhid1fZQoaAZoCWgPQwi9HkyKj8/rv5SGlFKUaBVLMmgWR0Cn0ALz5GjLdX2UKGgGaAloD0MItABtq1mn9L+UhpRSlGgVSzJoFkdAp9N4X40uUXV9lChoBmgJaA9DCIQOuoRDb+G/lIaUUpRoFUsyaBZHQKfSmR3eN1h1fZQoaAZoCWgPQwhvfy4aMp7iv5SGlFKUaBVLMmgWR0Cn0jr2xptadX2UKGgGaAloD0MIj+OHSiNm8L+UhpRSlGgVSzJoFkdAp9HjgydnTXV9lChoBmgJaA9DCPopjgOvlui/lIaUUpRoFUsyaBZHQKfVSn3L3bp1fZQoaAZoCWgPQwhlUG1wInrvv5SGlFKUaBVLMmgWR0Cn1GtjkMkQdX2UKGgGaAloD0MI1siutIzU7L+UhpRSlGgVSzJoFkdAp9QNYMfA9HV9lChoBmgJaA9DCJNwIY/gRvO/lIaUUpRoFUsyaBZHQKfTtgLJCBx1fZQoaAZoCWgPQwhwC5bqAl7zv5SGlFKUaBVLMmgWR0Cn1tGZE2HddX2UKGgGaAloD0MI14UfnE9d8r+UhpRSlGgVSzJoFkdAp9XxdY4hlnV9lChoBmgJaA9DCEw2Hmyxm/i/lIaUUpRoFUsyaBZHQKfVkol2Ned1fZQoaAZoCWgPQwjkLOxph3/3v5SGlFKUaBVLMmgWR0Cn1To2GZeBdX2UKGgGaAloD0MIQplGk4sx8b+UhpRSlGgVSzJoFkdAp9ft8gIQe3V9lChoBmgJaA9DCAEydOygEvi/lIaUUpRoFUsyaBZHQKfXDgSeyzJ1fZQoaAZoCWgPQwgtQNtq1lnzv5SGlFKUaBVLMmgWR0Cn1q8hkiD/dX2UKGgGaAloD0MIdlJflnYq8r+UhpRSlGgVSzJoFkdAp9ZXA44p+nV9lChoBmgJaA9DCAvVzcXfdu6/lIaUUpRoFUsyaBZHQKfZEH31zyV1fZQoaAZoCWgPQwhEwCFUqdnvv5SGlFKUaBVLMmgWR0Cn2DCFCb+cdX2UKGgGaAloD0MINExtqYN89L+UhpRSlGgVSzJoFkdAp9fRpN9H+nV9lChoBmgJaA9DCKNcGr/wivG/lIaUUpRoFUsyaBZHQKfXeXZXdTJ1fZQoaAZoCWgPQwhEa0Wb49zYv5SGlFKUaBVLMmgWR0Cn2jqfFrEcdX2UKGgGaAloD0MI8WYN3lel9b+UhpRSlGgVSzJoFkdAp9lagsbvPXV9lChoBmgJaA9DCKeRlsrbEeO/lIaUUpRoFUsyaBZHQKfY+3Jgb6x1fZQoaAZoCWgPQwjql4i3zj/lv5SGlFKUaBVLMmgWR0Cn2KMhPj4pdX2UKGgGaAloD0MIl+E/3UBB8r+UhpRSlGgVSzJoFkdAp9te0u14PnV9lChoBmgJaA9DCJ7sZkY/Gum/lIaUUpRoFUsyaBZHQKfafrP+n651fZQoaAZoCWgPQwiAETRmEvXpv5SGlFKUaBVLMmgWR0Cn2h+vZAY6dX2UKGgGaAloD0MI/nxbsFSX4b+UhpRSlGgVSzJoFkdAp9nHWBjFynV9lChoBmgJaA9DCKpHGtzWFu2/lIaUUpRoFUsyaBZHQKfcdUz9CNV1fZQoaAZoCWgPQwjDKt7IPPL6v5SGlFKUaBVLMmgWR0Cn25U3GXHBdX2UKGgGaAloD0MIcHfWbruQ8L+UhpRSlGgVSzJoFkdAp9s2U2UB4nV9lChoBmgJaA9DCD/ggQGEj+6/lIaUUpRoFUsyaBZHQKfa3fIjnmt1fZQoaAZoCWgPQwhzhXe5iG/kv5SGlFKUaBVLMmgWR0Cn3Y+Vkc0cdX2UKGgGaAloD0MIv0aSIFyB8L+UhpRSlGgVSzJoFkdAp9yvmeUY9HV9lChoBmgJaA9DCPmDgefew+m/lIaUUpRoFUsyaBZHQKfcULYwqRV1fZQoaAZoCWgPQwgB++jUlU/yv5SGlFKUaBVLMmgWR0Cn2/ixNZeSdX2UKGgGaAloD0MIx/FDpRGz57+UhpRSlGgVSzJoFkdAp961XHR1HXV9lChoBmgJaA9DCORnI9dNKdK/lIaUUpRoFUsyaBZHQKfd1Ukv9Lp1fZQoaAZoCWgPQwiFXRQ98DHfv5SGlFKUaBVLMmgWR0Cn3XZK3/gjdX2UKGgGaAloD0MI3GRUGcZd6b+UhpRSlGgVSzJoFkdAp90d9Dx9X3V9lChoBmgJaA9DCGVyameYWuS/lIaUUpRoFUsyaBZHQKff3WdVea91fZQoaAZoCWgPQwj7dDxmoHLxv5SGlFKUaBVLMmgWR0Cn3v1bRne0dX2UKGgGaAloD0MIiVxwBn8/+L+UhpRSlGgVSzJoFkdAp96eZssQNHV9lChoBmgJaA9DCA6HpYEf1ee/lIaUUpRoFUsyaBZHQKfeRhrFfiR1fZQoaAZoCWgPQwh+AihGlszov5SGlFKUaBVLMmgWR0Cn4QtQ0oBrdX2UKGgGaAloD0MI295uSQ4Y/r+UhpRSlGgVSzJoFkdAp+ArUgB91HV9lChoBmgJaA9DCCarItxk1OS/lIaUUpRoFUsyaBZHQKffzGz8gp11fZQoaAZoCWgPQwgUWWsotZfjv5SGlFKUaBVLMmgWR0Cn33QnYxtYdX2UKGgGaAloD0MI98d71coE9r+UhpRSlGgVSzJoFkdAp+Il/pdKNHV9lChoBmgJaA9DCNbiUwCM5wDAlIaUUpRoFUsyaBZHQKfhRdvbXYl1fZQoaAZoCWgPQwii0LLuHwvwv5SGlFKUaBVLMmgWR0Cn4ObV8Ti9dX2UKGgGaAloD0MIRKZ8CKoG+7+UhpRSlGgVSzJoFkdAp+COglF+eHV9lChoBmgJaA9DCO+QYoBEE/m/lIaUUpRoFUsyaBZHQKfjO+wkgOl1fZQoaAZoCWgPQwgDJQUWwJT6v5SGlFKUaBVLMmgWR0Cn4lvG6wt8dX2UKGgGaAloD0MIjuczoN4M7r+UhpRSlGgVSzJoFkdAp+H8uQIUrXV9lChoBmgJaA9DCIQqNXugFdm/lIaUUpRoFUsyaBZHQKfhpHPNVzZ1fZQoaAZoCWgPQwh7+gj84ecCwJSGlFKUaBVLMmgWR0Cn5GFruYx+dX2UKGgGaAloD0MIQl4PJsXH4b+UhpRSlGgVSzJoFkdAp+OBfMOf/XV9lChoBmgJaA9DCOmBj8GKk/+/lIaUUpRoFUsyaBZHQKfjIqgh8pl1fZQoaAZoCWgPQwgkm6vmOSIBwJSGlFKUaBVLMmgWR0Cn4spwS8J2dX2UKGgGaAloD0MIRBg/jXvz+7+UhpRSlGgVSzJoFkdAp+WK4Ds+mnV9lChoBmgJaA9DCHEbDeAtEPu/lIaUUpRoFUsyaBZHQKfkqwiaAnV1fZQoaAZoCWgPQwjEX5M16iH5v5SGlFKUaBVLMmgWR0Cn5ExBu4wzdX2UKGgGaAloD0MIm3XG98Wl3L+UhpRSlGgVSzJoFkdAp+P0QPI4l3V9lChoBmgJaA9DCMHmHDwTWgHAlIaUUpRoFUsyaBZHQKfmtrl/6O51fZQoaAZoCWgPQwgaahSSzKr4v5SGlFKUaBVLMmgWR0Cn5dapYLb6dX2UKGgGaAloD0MIxw2/m24Z8r+UhpRSlGgVSzJoFkdAp+V3wRXfZXV9lChoBmgJaA9DCKFI93MK8t6/lIaUUpRoFUsyaBZHQKflH5i3G4t1fZQoaAZoCWgPQwgUIApmTEHlv5SGlFKUaBVLMmgWR0Cn59kjX4CZdX2UKGgGaAloD0MIVwbVBicCAMCUhpRSlGgVSzJoFkdAp+b5Iz3yqnV9lChoBmgJaA9DCE2EDU+vNADAlIaUUpRoFUsyaBZHQKfmmh6jWTZ1fZQoaAZoCWgPQwh/pfPhWUL6v5SGlFKUaBVLMmgWR0Cn5kHwXqJNdX2UKGgGaAloD0MIJO1GH/MB+L+UhpRSlGgVSzJoFkdAp+kGqaPS2HV9lChoBmgJaA9DCEeNCTGXFPW/lIaUUpRoFUsyaBZHQKfoJpdrwfB1fZQoaAZoCWgPQwi+2HvxRZsCwJSGlFKUaBVLMmgWR0Cn58d/axoqdX2UKGgGaAloD0MIDycwndbNAMCUhpRSlGgVSzJoFkdAp+dvS4OMEXV9lChoBmgJaA9DCMyYgjXOJvm/lIaUUpRoFUsyaBZHQKfqGeA/cFh1fZQoaAZoCWgPQwi+hAoOL8gGwJSGlFKUaBVLMmgWR0Cn6Tmz8gp0dX2UKGgGaAloD0MITWVR2EVR+7+UhpRSlGgVSzJoFkdAp+ja0F8ohXV9lChoBmgJaA9DCG8PQkC+RPW/lIaUUpRoFUsyaBZHQKfogo4uK4x1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15d0e393f813d601d90585b5edcdcb884437edcb60806fc665f3f161869cc13d
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b1da9668c78424c01fa58319696bc540cae04b7a79716a7a3861c4ba915af3a
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f422c7fb820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f422c7fadc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679479548010727190, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIUzlPpl6yLpwMgs/IUzlPpl6yLpwMgs/IUzlPpl6yLpwMgs/IUzlPpl6yLpwMgs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzqjJPy3tLr8K76I/V699P6Hqr75vO9M/bavUv6KfA78lA44/RN2KPwcEoj9B3Gy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAhTOU+mXrIunAyCz+GEkY881eUulghBDwhTOU+mXrIunAyCz+GEkY881eUulghBDwhTOU+mXrIunAyCz+GEkY881eUulghBDwhTOU+mXrIunAyCz+GEkY881eUulghBDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.44784644 -0.00152953 0.54373837]\n [ 0.44784644 -0.00152953 0.54373837]\n [ 0.44784644 -0.00152953 0.54373837]\n [ 0.44784644 -0.00152953 0.54373837]]", "desired_goal": "[[ 1.575464 -0.6833065 1.2729199 ]\n [ 0.9909567 -0.34358695 1.6502513 ]\n [-1.6614815 -0.51415455 1.109471 ]\n [ 1.0848775 1.2657479 -0.9252358 ]]", "observation": "[[ 0.44784644 -0.00152953 0.54373837 0.01208938 -0.00113177 0.00806459]\n [ 0.44784644 -0.00152953 0.54373837 0.01208938 -0.00113177 0.00806459]\n [ 0.44784644 -0.00152953 0.54373837 0.01208938 -0.00113177 0.00806459]\n [ 0.44784644 -0.00152953 0.54373837 0.01208938 -0.00113177 0.00806459]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAB2yovT0GTz0skAg+aoqTOlTRC74xars9cOPmvfm5oLsjaf89sJm7vSPgmb1B8rQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0822373 0.05054306 0.13336247]\n [ 0.00112565 -0.13654071 0.09151114]\n [-0.11273849 -0.00490498 0.12471225]\n [-0.09160173 -0.07513454 0.08835269]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2a873Xmi8b+UhpRSlIwBbJRLMowBdJRHQKfK2O801qF1fZQoaAZoCWgPQwieCyO9qF30v5SGlFKUaBVLMmgWR0Cnyfiw0O3EdX2UKGgGaAloD0MIkNrEyf2O5r+UhpRSlGgVSzJoFkdAp8mZokAxSHV9lChoBmgJaA9DCO1mRj8azuS/lIaUUpRoFUsyaBZHQKfJQUYbbUR1fZQoaAZoCWgPQwjiWBe30YDrv5SGlFKUaBVLMmgWR0CnzCtWuHN5dX2UKGgGaAloD0MIU3qmlxiL9b+UhpRSlGgVSzJoFkdAp8tNTDO1OXV9lChoBmgJaA9DCJPgDWlUYPa/lIaUUpRoFUsyaBZHQKfK7y4nWrh1fZQoaAZoCWgPQwjM0k7N5Qbhv5SGlFKUaBVLMmgWR0Cnype0w8GLdX2UKGgGaAloD0MI6/8c5ssL7b+UhpRSlGgVSzJoFkdAp834LsrupnV9lChoBmgJaA9DCGLWi6Gc6Pm/lIaUUpRoFUsyaBZHQKfNGNd7fHh1fZQoaAZoCWgPQwjyI37FGq7lv5SGlFKUaBVLMmgWR0CnzLp0GNaRdX2UKGgGaAloD0MI1/m3y37d6r+UhpRSlGgVSzJoFkdAp8xi6Ymb9nV9lChoBmgJaA9DCFXCE3r9yeK/lIaUUpRoFUsyaBZHQKfPu88La251fZQoaAZoCWgPQwi/mC1ZFWH2v5SGlFKUaBVLMmgWR0Cnzty1eBxxdX2UKGgGaAloD0MIjWK5pdUQ6r+UhpRSlGgVSzJoFkdAp85+kzoECHV9lChoBmgJaA9DCFpHVRNEHfW/lIaUUpRoFUsyaBZHQKfOJymygPF1fZQoaAZoCWgPQwjzrKQV31Dqv5SGlFKUaBVLMmgWR0Cn0ZeEAYHgdX2UKGgGaAloD0MIL0/nilJC7b+UhpRSlGgVSzJoFkdAp9C4YHgP3HV9lChoBmgJaA9DCEzirIiaaOy/lIaUUpRoFUsyaBZHQKfQWmTkhid1fZQoaAZoCWgPQwi9HkyKj8/rv5SGlFKUaBVLMmgWR0Cn0ALz5GjLdX2UKGgGaAloD0MItABtq1mn9L+UhpRSlGgVSzJoFkdAp9N4X40uUXV9lChoBmgJaA9DCIQOuoRDb+G/lIaUUpRoFUsyaBZHQKfSmR3eN1h1fZQoaAZoCWgPQwhvfy4aMp7iv5SGlFKUaBVLMmgWR0Cn0jr2xptadX2UKGgGaAloD0MIj+OHSiNm8L+UhpRSlGgVSzJoFkdAp9HjgydnTXV9lChoBmgJaA9DCPopjgOvlui/lIaUUpRoFUsyaBZHQKfVSn3L3bp1fZQoaAZoCWgPQwhlUG1wInrvv5SGlFKUaBVLMmgWR0Cn1GtjkMkQdX2UKGgGaAloD0MI1siutIzU7L+UhpRSlGgVSzJoFkdAp9QNYMfA9HV9lChoBmgJaA9DCJNwIY/gRvO/lIaUUpRoFUsyaBZHQKfTtgLJCBx1fZQoaAZoCWgPQwhwC5bqAl7zv5SGlFKUaBVLMmgWR0Cn1tGZE2HddX2UKGgGaAloD0MI14UfnE9d8r+UhpRSlGgVSzJoFkdAp9XxdY4hlnV9lChoBmgJaA9DCEw2Hmyxm/i/lIaUUpRoFUsyaBZHQKfVkol2Ned1fZQoaAZoCWgPQwjkLOxph3/3v5SGlFKUaBVLMmgWR0Cn1To2GZeBdX2UKGgGaAloD0MIQplGk4sx8b+UhpRSlGgVSzJoFkdAp9ft8gIQe3V9lChoBmgJaA9DCAEydOygEvi/lIaUUpRoFUsyaBZHQKfXDgSeyzJ1fZQoaAZoCWgPQwgtQNtq1lnzv5SGlFKUaBVLMmgWR0Cn1q8hkiD/dX2UKGgGaAloD0MIdlJflnYq8r+UhpRSlGgVSzJoFkdAp9ZXA44p+nV9lChoBmgJaA9DCAvVzcXfdu6/lIaUUpRoFUsyaBZHQKfZEH31zyV1fZQoaAZoCWgPQwhEwCFUqdnvv5SGlFKUaBVLMmgWR0Cn2DCFCb+cdX2UKGgGaAloD0MINExtqYN89L+UhpRSlGgVSzJoFkdAp9fRpN9H+nV9lChoBmgJaA9DCKNcGr/wivG/lIaUUpRoFUsyaBZHQKfXeXZXdTJ1fZQoaAZoCWgPQwhEa0Wb49zYv5SGlFKUaBVLMmgWR0Cn2jqfFrEcdX2UKGgGaAloD0MI8WYN3lel9b+UhpRSlGgVSzJoFkdAp9lagsbvPXV9lChoBmgJaA9DCKeRlsrbEeO/lIaUUpRoFUsyaBZHQKfY+3Jgb6x1fZQoaAZoCWgPQwjql4i3zj/lv5SGlFKUaBVLMmgWR0Cn2KMhPj4pdX2UKGgGaAloD0MIl+E/3UBB8r+UhpRSlGgVSzJoFkdAp9te0u14PnV9lChoBmgJaA9DCJ7sZkY/Gum/lIaUUpRoFUsyaBZHQKfafrP+n651fZQoaAZoCWgPQwiAETRmEvXpv5SGlFKUaBVLMmgWR0Cn2h+vZAY6dX2UKGgGaAloD0MI/nxbsFSX4b+UhpRSlGgVSzJoFkdAp9nHWBjFynV9lChoBmgJaA9DCKpHGtzWFu2/lIaUUpRoFUsyaBZHQKfcdUz9CNV1fZQoaAZoCWgPQwjDKt7IPPL6v5SGlFKUaBVLMmgWR0Cn25U3GXHBdX2UKGgGaAloD0MIcHfWbruQ8L+UhpRSlGgVSzJoFkdAp9s2U2UB4nV9lChoBmgJaA9DCD/ggQGEj+6/lIaUUpRoFUsyaBZHQKfa3fIjnmt1fZQoaAZoCWgPQwhzhXe5iG/kv5SGlFKUaBVLMmgWR0Cn3Y+Vkc0cdX2UKGgGaAloD0MIv0aSIFyB8L+UhpRSlGgVSzJoFkdAp9yvmeUY9HV9lChoBmgJaA9DCPmDgefew+m/lIaUUpRoFUsyaBZHQKfcULYwqRV1fZQoaAZoCWgPQwgB++jUlU/yv5SGlFKUaBVLMmgWR0Cn2/ixNZeSdX2UKGgGaAloD0MIx/FDpRGz57+UhpRSlGgVSzJoFkdAp961XHR1HXV9lChoBmgJaA9DCORnI9dNKdK/lIaUUpRoFUsyaBZHQKfd1Ukv9Lp1fZQoaAZoCWgPQwiFXRQ98DHfv5SGlFKUaBVLMmgWR0Cn3XZK3/gjdX2UKGgGaAloD0MI3GRUGcZd6b+UhpRSlGgVSzJoFkdAp90d9Dx9X3V9lChoBmgJaA9DCGVyameYWuS/lIaUUpRoFUsyaBZHQKff3WdVea91fZQoaAZoCWgPQwj7dDxmoHLxv5SGlFKUaBVLMmgWR0Cn3v1bRne0dX2UKGgGaAloD0MIiVxwBn8/+L+UhpRSlGgVSzJoFkdAp96eZssQNHV9lChoBmgJaA9DCA6HpYEf1ee/lIaUUpRoFUsyaBZHQKfeRhrFfiR1fZQoaAZoCWgPQwh+AihGlszov5SGlFKUaBVLMmgWR0Cn4QtQ0oBrdX2UKGgGaAloD0MI295uSQ4Y/r+UhpRSlGgVSzJoFkdAp+ArUgB91HV9lChoBmgJaA9DCCarItxk1OS/lIaUUpRoFUsyaBZHQKffzGz8gp11fZQoaAZoCWgPQwgUWWsotZfjv5SGlFKUaBVLMmgWR0Cn33QnYxtYdX2UKGgGaAloD0MI98d71coE9r+UhpRSlGgVSzJoFkdAp+Il/pdKNHV9lChoBmgJaA9DCNbiUwCM5wDAlIaUUpRoFUsyaBZHQKfhRdvbXYl1fZQoaAZoCWgPQwii0LLuHwvwv5SGlFKUaBVLMmgWR0Cn4ObV8Ti9dX2UKGgGaAloD0MIRKZ8CKoG+7+UhpRSlGgVSzJoFkdAp+COglF+eHV9lChoBmgJaA9DCO+QYoBEE/m/lIaUUpRoFUsyaBZHQKfjO+wkgOl1fZQoaAZoCWgPQwgDJQUWwJT6v5SGlFKUaBVLMmgWR0Cn4lvG6wt8dX2UKGgGaAloD0MIjuczoN4M7r+UhpRSlGgVSzJoFkdAp+H8uQIUrXV9lChoBmgJaA9DCIQqNXugFdm/lIaUUpRoFUsyaBZHQKfhpHPNVzZ1fZQoaAZoCWgPQwh7+gj84ecCwJSGlFKUaBVLMmgWR0Cn5GFruYx+dX2UKGgGaAloD0MIQl4PJsXH4b+UhpRSlGgVSzJoFkdAp+OBfMOf/XV9lChoBmgJaA9DCOmBj8GKk/+/lIaUUpRoFUsyaBZHQKfjIqgh8pl1fZQoaAZoCWgPQwgkm6vmOSIBwJSGlFKUaBVLMmgWR0Cn4spwS8J2dX2UKGgGaAloD0MIRBg/jXvz+7+UhpRSlGgVSzJoFkdAp+WK4Ds+mnV9lChoBmgJaA9DCHEbDeAtEPu/lIaUUpRoFUsyaBZHQKfkqwiaAnV1fZQoaAZoCWgPQwjEX5M16iH5v5SGlFKUaBVLMmgWR0Cn5ExBu4wzdX2UKGgGaAloD0MIm3XG98Wl3L+UhpRSlGgVSzJoFkdAp+P0QPI4l3V9lChoBmgJaA9DCMHmHDwTWgHAlIaUUpRoFUsyaBZHQKfmtrl/6O51fZQoaAZoCWgPQwgaahSSzKr4v5SGlFKUaBVLMmgWR0Cn5dapYLb6dX2UKGgGaAloD0MIxw2/m24Z8r+UhpRSlGgVSzJoFkdAp+V3wRXfZXV9lChoBmgJaA9DCKFI93MK8t6/lIaUUpRoFUsyaBZHQKflH5i3G4t1fZQoaAZoCWgPQwgUIApmTEHlv5SGlFKUaBVLMmgWR0Cn59kjX4CZdX2UKGgGaAloD0MIVwbVBicCAMCUhpRSlGgVSzJoFkdAp+b5Iz3yqnV9lChoBmgJaA9DCE2EDU+vNADAlIaUUpRoFUsyaBZHQKfmmh6jWTZ1fZQoaAZoCWgPQwh/pfPhWUL6v5SGlFKUaBVLMmgWR0Cn5kHwXqJNdX2UKGgGaAloD0MIJO1GH/MB+L+UhpRSlGgVSzJoFkdAp+kGqaPS2HV9lChoBmgJaA9DCEeNCTGXFPW/lIaUUpRoFUsyaBZHQKfoJpdrwfB1fZQoaAZoCWgPQwi+2HvxRZsCwJSGlFKUaBVLMmgWR0Cn58d/axoqdX2UKGgGaAloD0MIDycwndbNAMCUhpRSlGgVSzJoFkdAp+dvS4OMEXV9lChoBmgJaA9DCMyYgjXOJvm/lIaUUpRoFUsyaBZHQKfqGeA/cFh1fZQoaAZoCWgPQwi+hAoOL8gGwJSGlFKUaBVLMmgWR0Cn6Tmz8gp0dX2UKGgGaAloD0MITWVR2EVR+7+UhpRSlGgVSzJoFkdAp+ja0F8ohXV9lChoBmgJaA9DCG8PQkC+RPW/lIaUUpRoFUsyaBZHQKfogo4uK4x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (285 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.702576223318465, "std_reward": 0.171013578445178, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-22T10:56:48.469519"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efdb60adae0c554f7731643ba09e1976b7f1b8dacdef1f9879977b785e5db157
|
3 |
+
size 3056
|