dussinus commited on
Commit
a8d6808
1 Parent(s): b7eb2dc

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 850.97 +/- 37.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:275fc161efcd9e725130ff019f4ffab1f588c35919f61d2a06d802a7802a89c0
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7facd5594160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7facd55941f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7facd5594280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7facd5594310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7facd55943a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7facd5594430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7facd55944c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7facd5594550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7facd55945e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7facd5594670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7facd5594700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7facd5594790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7facd5595480>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 1000000,
63
+ "_total_timesteps": 1000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679327695113192553,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHlUEb+4cL4+JgUjP5+1BD6B2ge/NY1QQBlAUMCVbVk/3FUCwGO7jz6MFcO/wpdpvgM5iD/Hdqa/OoIFPwBAzbu8hK0/3nsYwJ2tGMBzn26/16ebv3qlgTsmeli/TnRFP3ncpj5BOpQ+6SSZPpB6FcDA79k/01xXP/rMGj+XZkpAwSFJv3l2eD+Tvdq/GrOKv66aED3Neo1AR8nuPuo9bD7YC7E/HZ4IQNKoHD6IojdA2ZqQPVqgi781SAzAab4+P/+42D75IVtAn+hLv9jKSrt53KY+QTqUPuH3VcCQehXAyuNhv0158b7M1V8+9QSyvsO+zj0nPQA+tAyEPmZaKL4cwkA9GYezvTGW1b4pyJo8NnwXPhnEmL0KiwE/MXJIPSC2BL8gPn+9iDFCP/W43z3CbKe+K47JvSGB8r73mkO9edymPkE6lD7pJJk+EDfbPnQLV78jGhW+Bs7pPhiCEL+g1CQ+BzopPlkbDT/305c+i0gCPx2/RLx4xb2+XEyrvFOzkb/pWf48Sq6sPcp0gL07q0W9ynLePa6zHj+Dpo48yRKavzEd0D2LQzu/UOePvXncpj5BOpQ+6SSZPhA32z6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA7DpS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAe6FTPQAAAABsH/i/AAAAAOkslb0AAAAA1b3ZPwAAAABrLA8+AAAAAE4s6j8AAAAAKQd0PQAAAAAGovK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuPekNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJetej0AAAAAj6PrvwAAAAB5Hrw9AAAAAKiy9D8AAAAAC+qyPQAAAABx+/A/AAAAABFnw70AAAAA6ePivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPnOFTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICaRGK9AAAAAPrp578AAAAAz4V8PQAAAAAKmQBAAAAAAE0ppTwAAAAAWNzlPwAAAACLCjU9AAAAACy7678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRkME2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgdnovQAAAAAmSPK/AAAAAGfKAD4AAAAAY3PkPwAAAAAxRcg9AAAAAGo6+T8AAAAAZKG6PQAAAABLPADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIx/pk/bCaaMAWyUTegDjAF0lEdAnh3EXP7emHV9lChoBkdAjKNIVEd/8WgHTegDaAhHQJ4gkQumJnB1fZQoaAZHQIfluL5ylvZoB03oA2gIR0CeLDJ5VwPzdX2UKGgGR0CLSt8lXzUaaAdN6ANoCEdAniw8gpz90nV9lChoBkdAhsfXpwCKaWgHTegDaAhHQJ4+4vK2a2F1fZQoaAZHQIakCcEvCdloB03oA2gIR0CeQNpblijMdX2UKGgGR0CBMxBZZB9kaAdN6ANoCEdAnkiChnJ1aHV9lChoBkdAfsUpQk5ZKWgHTegDaAhHQJ5IiIgvDgt1fZQoaAZHQIarR6po9LZoB03oA2gIR0CeWmf/FR51dX2UKGgGR0CDct1Ng0CSaAdN6ANoCEdAnl1V5v99+nV9lChoBkdAhy49A5aNdmgHTegDaAhHQJ5o0InjQzF1fZQoaAZHQIZ4oprk8zRoB03oA2gIR0CeaNoB7u2JdX2UKGgGR0CHeGr+YMOPaAdN6ANoCEdAnnwFDKHO8nV9lChoBkdAg/jsdDIBBGgHTegDaAhHQJ59+URnOB11fZQoaAZHQIcWEAPuogpoB03oA2gIR0CehY690zTGdX2UKGgGR0CKUzd69kBkaAdN6ANoCEdAnoWVUuL743V9lChoBkdAir7L0rbxmWgHTegDaAhHQJ6XX/hl18t1fZQoaAZHQIlY9PxhDw9oB03oA2gIR0Cemk+8oQWfdX2UKGgGR0CLJzYqXnhbaAdN6ANoCEdAnqXSzLOiWXV9lChoBkdAidkxmbsniWgHTegDaAhHQJ6l3FAE+xJ1fZQoaAZHQIrP4DNhVlxoB03oA2gIR0CeuNrDZUT+dX2UKGgGR0CK76M6RyOraAdN6ANoCEdAnrrMhX8wYnV9lChoBkdAjXttCqp97WgHTegDaAhHQJ7CbXXiBGx1fZQoaAZHQIunoeq7yx1oB03oA2gIR0CewnM2m52AdX2UKGgGR0CM3oX531SPaAdN6ANoCEdAntPwk1Mue3V9lChoBkdAjAbqwIMSb2gHTegDaAhHQJ7W3H1e0HB1fZQoaAZHQIq433xnWatoB03oA2gIR0Ce4i6tT1kEdX2UKGgGR0CKkFKcNH6NaAdN6ANoCEdAnuI4nrpqynV9lChoBkdAjWa0WVNYbWgHTegDaAhHQJ71tiqhlDp1fZQoaAZHQIpxOYa5wwVoB03oA2gIR0Ce99GMXJo1dX2UKGgGR0CJ7ag3974SaAdN6ANoCEdAnv9X9R77bnV9lChoBkdAh7Km0u14PmgHTegDaAhHQJ7/X8ejmCB1fZQoaAZHQIqL7Ackt29oB03oA2gIR0CfEGSRbKRudX2UKGgGR0CMCkVWS2YwaAdN6ANoCEdAnxMoOhCdBnV9lChoBkdAjQrX7tRekmgHTegDaAhHQJ8d8Vi4J/p1fZQoaAZHQIyP/Jq7AcloB03oA2gIR0CfHf0pmVZ+dX2UKGgGR0CK+nYlpoK2aAdN6ANoCEdAnzHonndO7HV9lChoBkdAjFYq6OHWSWgHTegDaAhHQJ8z60Re1KJ1fZQoaAZHQI3W6zsyBTZoB03oA2gIR0CfO30A93bFdX2UKGgGR0CN0UXHim2taAdN6ANoCEdAnzuDKxLTQXV9lChoBkdAi1HMnRb8nGgHTegDaAhHQJ9MyUOd5IJ1fZQoaAZHQI6v7KV6eGxoB03oA2gIR0CfTwDkELYxdX2UKGgGR0CL0tMWXTmXaAdN6ANoCEdAn1pN/OMVDnV9lChoBkdAi4IoYWLxZ2gHTegDaAhHQJ9aWgDifg91fZQoaAZHQI2PUsOG0u1oB03oA2gIR0CfbzI7eVLSdX2UKGgGR0COhwNpdrwfaAdN6ANoCEdAn3FIbXHzYnV9lChoBkdAjboxWcSXdGgHTegDaAhHQJ946goPTXt1fZQoaAZHQI6a0ZgogFJoB03oA2gIR0CfePAvL5h0dX2UKGgGR0CLiAzyjHn2aAdN6ANoCEdAn4oJ2dNFjXV9lChoBkdAjeSWDg62fGgHTegDaAhHQJ+MHD4xk/d1fZQoaAZHQItxNHQQcxVoB03oA2gIR0CflzwjdHlPdX2UKGgGR0CIelANXo1UaAdN6ANoCEdAn5dGtU4rBnV9lChoBkdAju1dP1tfomgHTegDaAhHQJ+sXZHuqm11fZQoaAZHQIsD2b1AZ89oB03oA2gIR0CfrmWxQizLdX2UKGgGR0COIAfwqiGnaAdN6ANoCEdAn7XODJ2dNHV9lChoBkdAio9dkSVW0mgHTegDaAhHQJ+11CQcPvt1fZQoaAZHQIyvjXlKbrloB03oA2gIR0CfxvxdIGyHdX2UKGgGR0CPUaAU+LWJaAdN6ANoCEdAn8jfrrxAjnV9lChoBkdAjaBU2tMfzWgHTegDaAhHQJ/Tfh1klNV1fZQoaAZHQIjeMCYCyQhoB03oA2gIR0Cf04emelKsdX2UKGgGR0CNQndgOSW7aAdN6ANoCEdAn+i98iOea3V9lChoBkdAjtHCeVcD82gHTegDaAhHQJ/qu+tbLU11fZQoaAZHQI8TWgBcRlJoB03oA2gIR0Cf8koVEd/8dX2UKGgGR0COjwtuk1uSaAdN6ANoCEdAn/JP3vhIfHV9lChoBkdAjaa6Dwpe/2gHTegDaAhHQKABmq5sj3V1fZQoaAZHQI+wnlyR0U5oB03oA2gIR0CgAqUCRwIddX2UKGgGR0CP2lqO938oaAdN6ANoCEdAoAd6x5cC5nV9lChoBkdAj4w02DQJHGgHTegDaAhHQKAHfyaNMoN1fZQoaAZHQI7Tzs8gZCRoB03oA2gIR0CgEs7wjMV2dX2UKGgGR0CPE1GQSzw+aAdN6ANoCEdAoBPjufEn9nV9lChoBkdAjj0sDwH7g2gHTegDaAhHQKAXrxlQMx51fZQoaAZHQI28Pj4pMHtoB03oA2gIR0CgF7JBw++udX2UKGgGR0CPDUtL+PzWaAdN6ANoCEdAoCA8lzEJjXV9lChoBkdAjNMhas6q82gHTegDaAhHQKAhR3hXKbN1fZQoaAZHQI7YjqUu+RJoB03oA2gIR0CgJgcJtzjndX2UKGgGR0COjquloDgZaAdN6ANoCEdAoCYMIw/PgXV9lChoBkdAjhQ8uSOinGgHTegDaAhHQKAxOGMXJo11fZQoaAZHQIzTeFWXC0poB03oA2gIR0CgMku1fE4vdX2UKGgGR0CNjmGIKtxNaAdN6ANoCEdAoDYRaRp1zXV9lChoBkdAjUXiIcinpGgHTegDaAhHQKA2FK1XvH91fZQoaAZHQI0WPfyf+S9oB03oA2gIR0CgPq7Uoa1kdX2UKGgGR0COOYbhm5DraAdN6ANoCEdAoD+8GHHmzXV9lChoBkdAjF18lXzUZ2gHTegDaAhHQKBEZASnLq51fZQoaAZHQI61wyIpH7RoB03oA2gIR0CgRGgbADaHdX2UKGgGR0CNQV6+FlCkaAdN6ANoCEdAoE+8HKOktXV9lChoBkdAjXr88La24WgHTegDaAhHQKBQuao/A0t1fZQoaAZHQIzXi72+PBBoB03oA2gIR0CgVIm+j/ModX2UKGgGR0CNT0NgBtDVaAdN6ANoCEdAoFSMleF+NXV9lChoBkdAjNA8KgIyCWgHTegDaAhHQKBdGR5kbxV1fZQoaAZHQIoaO1ndwehoB03oA2gIR0CgXiOoHcDbdX2UKGgGR0CJz6a2nbZfaAdN6ANoCEdAoGKSGrS3LHV9lChoBkdAim/sY2sJY2gHTegDaAhHQKBillkH2RJ1fZQoaAZHQI42wLofSx9oB03oA2gIR0CgbiWU8mrsdX2UKGgGR0CNlpJGvwEyaAdN6ANoCEdAoG8zV8Ti83V9lChoBkdAi5y/HHWBjGgHTegDaAhHQKBzEbXpW3l1fZQoaAZHQIuFbkKeCkJoB03oA2gIR0CgcxUGmk30dX2UKGgGR0CNS8TbnHNpaAdN6ANoCEdAoHvMfvF3p3V9lChoBkdAjR2KAavRq2gHTegDaAhHQKB8yNDMNc51fZQoaAZHQIwy4ffXPJJoB03oA2gIR0CggVMFMZgpdX2UKGgGR0CKvXbB42S/aAdN6ANoCEdAoIFXlCCz1XVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 31250,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc1d1c3e1aab96882fa6f170b70f638419e424ae88bfaa37f6c0c8d42c08cd54
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a37238f97447902ff263515b7561c26fe414f56fb14289a81e3fed23edd7306
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7facd5594160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7facd55941f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7facd5594280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7facd5594310>", "_build": "<function ActorCriticPolicy._build at 0x7facd55943a0>", "forward": "<function ActorCriticPolicy.forward at 0x7facd5594430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7facd55944c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7facd5594550>", "_predict": "<function ActorCriticPolicy._predict at 0x7facd55945e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7facd5594670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7facd5594700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7facd5594790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7facd5595480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679327695113192553, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHlUEb+4cL4+JgUjP5+1BD6B2ge/NY1QQBlAUMCVbVk/3FUCwGO7jz6MFcO/wpdpvgM5iD/Hdqa/OoIFPwBAzbu8hK0/3nsYwJ2tGMBzn26/16ebv3qlgTsmeli/TnRFP3ncpj5BOpQ+6SSZPpB6FcDA79k/01xXP/rMGj+XZkpAwSFJv3l2eD+Tvdq/GrOKv66aED3Neo1AR8nuPuo9bD7YC7E/HZ4IQNKoHD6IojdA2ZqQPVqgi781SAzAab4+P/+42D75IVtAn+hLv9jKSrt53KY+QTqUPuH3VcCQehXAyuNhv0158b7M1V8+9QSyvsO+zj0nPQA+tAyEPmZaKL4cwkA9GYezvTGW1b4pyJo8NnwXPhnEmL0KiwE/MXJIPSC2BL8gPn+9iDFCP/W43z3CbKe+K47JvSGB8r73mkO9edymPkE6lD7pJJk+EDfbPnQLV78jGhW+Bs7pPhiCEL+g1CQ+BzopPlkbDT/305c+i0gCPx2/RLx4xb2+XEyrvFOzkb/pWf48Sq6sPcp0gL07q0W9ynLePa6zHj+Dpo48yRKavzEd0D2LQzu/UOePvXncpj5BOpQ+6SSZPhA32z6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA7DpS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAe6FTPQAAAABsH/i/AAAAAOkslb0AAAAA1b3ZPwAAAABrLA8+AAAAAE4s6j8AAAAAKQd0PQAAAAAGovK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuPekNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJetej0AAAAAj6PrvwAAAAB5Hrw9AAAAAKiy9D8AAAAAC+qyPQAAAABx+/A/AAAAABFnw70AAAAA6ePivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPnOFTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICaRGK9AAAAAPrp578AAAAAz4V8PQAAAAAKmQBAAAAAAE0ppTwAAAAAWNzlPwAAAACLCjU9AAAAACy7678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRkME2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgdnovQAAAAAmSPK/AAAAAGfKAD4AAAAAY3PkPwAAAAAxRcg9AAAAAGo6+T8AAAAAZKG6PQAAAABLPADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIx/pk/bCaaMAWyUTegDjAF0lEdAnh3EXP7emHV9lChoBkdAjKNIVEd/8WgHTegDaAhHQJ4gkQumJnB1fZQoaAZHQIfluL5ylvZoB03oA2gIR0CeLDJ5VwPzdX2UKGgGR0CLSt8lXzUaaAdN6ANoCEdAniw8gpz90nV9lChoBkdAhsfXpwCKaWgHTegDaAhHQJ4+4vK2a2F1fZQoaAZHQIakCcEvCdloB03oA2gIR0CeQNpblijMdX2UKGgGR0CBMxBZZB9kaAdN6ANoCEdAnkiChnJ1aHV9lChoBkdAfsUpQk5ZKWgHTegDaAhHQJ5IiIgvDgt1fZQoaAZHQIarR6po9LZoB03oA2gIR0CeWmf/FR51dX2UKGgGR0CDct1Ng0CSaAdN6ANoCEdAnl1V5v99+nV9lChoBkdAhy49A5aNdmgHTegDaAhHQJ5o0InjQzF1fZQoaAZHQIZ4oprk8zRoB03oA2gIR0CeaNoB7u2JdX2UKGgGR0CHeGr+YMOPaAdN6ANoCEdAnnwFDKHO8nV9lChoBkdAg/jsdDIBBGgHTegDaAhHQJ59+URnOB11fZQoaAZHQIcWEAPuogpoB03oA2gIR0CehY690zTGdX2UKGgGR0CKUzd69kBkaAdN6ANoCEdAnoWVUuL743V9lChoBkdAir7L0rbxmWgHTegDaAhHQJ6XX/hl18t1fZQoaAZHQIlY9PxhDw9oB03oA2gIR0Cemk+8oQWfdX2UKGgGR0CLJzYqXnhbaAdN6ANoCEdAnqXSzLOiWXV9lChoBkdAidkxmbsniWgHTegDaAhHQJ6l3FAE+xJ1fZQoaAZHQIrP4DNhVlxoB03oA2gIR0CeuNrDZUT+dX2UKGgGR0CK76M6RyOraAdN6ANoCEdAnrrMhX8wYnV9lChoBkdAjXttCqp97WgHTegDaAhHQJ7CbXXiBGx1fZQoaAZHQIunoeq7yx1oB03oA2gIR0CewnM2m52AdX2UKGgGR0CM3oX531SPaAdN6ANoCEdAntPwk1Mue3V9lChoBkdAjAbqwIMSb2gHTegDaAhHQJ7W3H1e0HB1fZQoaAZHQIq433xnWatoB03oA2gIR0Ce4i6tT1kEdX2UKGgGR0CKkFKcNH6NaAdN6ANoCEdAnuI4nrpqynV9lChoBkdAjWa0WVNYbWgHTegDaAhHQJ71tiqhlDp1fZQoaAZHQIpxOYa5wwVoB03oA2gIR0Ce99GMXJo1dX2UKGgGR0CJ7ag3974SaAdN6ANoCEdAnv9X9R77bnV9lChoBkdAh7Km0u14PmgHTegDaAhHQJ7/X8ejmCB1fZQoaAZHQIqL7Ackt29oB03oA2gIR0CfEGSRbKRudX2UKGgGR0CMCkVWS2YwaAdN6ANoCEdAnxMoOhCdBnV9lChoBkdAjQrX7tRekmgHTegDaAhHQJ8d8Vi4J/p1fZQoaAZHQIyP/Jq7AcloB03oA2gIR0CfHf0pmVZ+dX2UKGgGR0CK+nYlpoK2aAdN6ANoCEdAnzHonndO7HV9lChoBkdAjFYq6OHWSWgHTegDaAhHQJ8z60Re1KJ1fZQoaAZHQI3W6zsyBTZoB03oA2gIR0CfO30A93bFdX2UKGgGR0CN0UXHim2taAdN6ANoCEdAnzuDKxLTQXV9lChoBkdAi1HMnRb8nGgHTegDaAhHQJ9MyUOd5IJ1fZQoaAZHQI6v7KV6eGxoB03oA2gIR0CfTwDkELYxdX2UKGgGR0CL0tMWXTmXaAdN6ANoCEdAn1pN/OMVDnV9lChoBkdAi4IoYWLxZ2gHTegDaAhHQJ9aWgDifg91fZQoaAZHQI2PUsOG0u1oB03oA2gIR0CfbzI7eVLSdX2UKGgGR0COhwNpdrwfaAdN6ANoCEdAn3FIbXHzYnV9lChoBkdAjboxWcSXdGgHTegDaAhHQJ946goPTXt1fZQoaAZHQI6a0ZgogFJoB03oA2gIR0CfePAvL5h0dX2UKGgGR0CLiAzyjHn2aAdN6ANoCEdAn4oJ2dNFjXV9lChoBkdAjeSWDg62fGgHTegDaAhHQJ+MHD4xk/d1fZQoaAZHQItxNHQQcxVoB03oA2gIR0CflzwjdHlPdX2UKGgGR0CIelANXo1UaAdN6ANoCEdAn5dGtU4rBnV9lChoBkdAju1dP1tfomgHTegDaAhHQJ+sXZHuqm11fZQoaAZHQIsD2b1AZ89oB03oA2gIR0CfrmWxQizLdX2UKGgGR0COIAfwqiGnaAdN6ANoCEdAn7XODJ2dNHV9lChoBkdAio9dkSVW0mgHTegDaAhHQJ+11CQcPvt1fZQoaAZHQIyvjXlKbrloB03oA2gIR0CfxvxdIGyHdX2UKGgGR0CPUaAU+LWJaAdN6ANoCEdAn8jfrrxAjnV9lChoBkdAjaBU2tMfzWgHTegDaAhHQJ/Tfh1klNV1fZQoaAZHQIjeMCYCyQhoB03oA2gIR0Cf04emelKsdX2UKGgGR0CNQndgOSW7aAdN6ANoCEdAn+i98iOea3V9lChoBkdAjtHCeVcD82gHTegDaAhHQJ/qu+tbLU11fZQoaAZHQI8TWgBcRlJoB03oA2gIR0Cf8koVEd/8dX2UKGgGR0COjwtuk1uSaAdN6ANoCEdAn/JP3vhIfHV9lChoBkdAjaa6Dwpe/2gHTegDaAhHQKABmq5sj3V1fZQoaAZHQI+wnlyR0U5oB03oA2gIR0CgAqUCRwIddX2UKGgGR0CP2lqO938oaAdN6ANoCEdAoAd6x5cC5nV9lChoBkdAj4w02DQJHGgHTegDaAhHQKAHfyaNMoN1fZQoaAZHQI7Tzs8gZCRoB03oA2gIR0CgEs7wjMV2dX2UKGgGR0CPE1GQSzw+aAdN6ANoCEdAoBPjufEn9nV9lChoBkdAjj0sDwH7g2gHTegDaAhHQKAXrxlQMx51fZQoaAZHQI28Pj4pMHtoB03oA2gIR0CgF7JBw++udX2UKGgGR0CPDUtL+PzWaAdN6ANoCEdAoCA8lzEJjXV9lChoBkdAjNMhas6q82gHTegDaAhHQKAhR3hXKbN1fZQoaAZHQI7YjqUu+RJoB03oA2gIR0CgJgcJtzjndX2UKGgGR0COjquloDgZaAdN6ANoCEdAoCYMIw/PgXV9lChoBkdAjhQ8uSOinGgHTegDaAhHQKAxOGMXJo11fZQoaAZHQIzTeFWXC0poB03oA2gIR0CgMku1fE4vdX2UKGgGR0CNjmGIKtxNaAdN6ANoCEdAoDYRaRp1zXV9lChoBkdAjUXiIcinpGgHTegDaAhHQKA2FK1XvH91fZQoaAZHQI0WPfyf+S9oB03oA2gIR0CgPq7Uoa1kdX2UKGgGR0COOYbhm5DraAdN6ANoCEdAoD+8GHHmzXV9lChoBkdAjF18lXzUZ2gHTegDaAhHQKBEZASnLq51fZQoaAZHQI61wyIpH7RoB03oA2gIR0CgRGgbADaHdX2UKGgGR0CNQV6+FlCkaAdN6ANoCEdAoE+8HKOktXV9lChoBkdAjXr88La24WgHTegDaAhHQKBQuao/A0t1fZQoaAZHQIzXi72+PBBoB03oA2gIR0CgVIm+j/ModX2UKGgGR0CNT0NgBtDVaAdN6ANoCEdAoFSMleF+NXV9lChoBkdAjNA8KgIyCWgHTegDaAhHQKBdGR5kbxV1fZQoaAZHQIoaO1ndwehoB03oA2gIR0CgXiOoHcDbdX2UKGgGR0CJz6a2nbZfaAdN6ANoCEdAoGKSGrS3LHV9lChoBkdAim/sY2sJY2gHTegDaAhHQKBillkH2RJ1fZQoaAZHQI42wLofSx9oB03oA2gIR0CgbiWU8mrsdX2UKGgGR0CNlpJGvwEyaAdN6ANoCEdAoG8zV8Ti83V9lChoBkdAi5y/HHWBjGgHTegDaAhHQKBzEbXpW3l1fZQoaAZHQIuFbkKeCkJoB03oA2gIR0CgcxUGmk30dX2UKGgGR0CNS8TbnHNpaAdN6ANoCEdAoHvMfvF3p3V9lChoBkdAjR2KAavRq2gHTegDaAhHQKB8yNDMNc51fZQoaAZHQIwy4ffXPJJoB03oA2gIR0CggVMFMZgpdX2UKGgGR0CKvXbB42S/aAdN6ANoCEdAoIFXlCCz1XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (256 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 850.9662204087247, "std_reward": 37.30655056389721, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-20T16:28:55.579559"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87e817b1841de3ab56af69c49b66e430a289a60e1ba21ffed58a762b3f04ffa4
3
+ size 2136