Theob commited on
Commit
c342354
·
verified ·
1 Parent(s): fac47b5

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +1 -1
handler.py CHANGED
@@ -79,7 +79,7 @@ class EndpointHandler:
79
  assert "timestamps" in inputs and "open" in inputs and "high" in inputs and "low" in inputs and "close" in inputs and "volume" in inputs, "Required keys: timestamps, open, high, low, close, volume"
80
  assert isinstance(inputs["timestamps"], list) and isinstance(inputs["open"], list) and isinstance(inputs["high"], list) and isinstance(inputs["low"], list) and isinstance(inputs["close"], list) and isinstance(inputs["volume"], list), "Inputs must be lists"
81
  assert len(inputs["timestamps"]) == len(inputs["open"]) == len(inputs["high"]) == len(inputs["low"]) == len(inputs["close"]) == len(inputs["volume"]), "Inputs must have the same length"
82
- timestamps = torch.tensor(inputs["timestamps"])
83
  samples = torch.tensor([inputs["open"], inputs["high"], inputs["low"], inputs["close"], inputs["volume"]], dtype=torch.float32).T.contiguous()
84
  steps = data.pop("steps", 4)
85
  n_scenarios = data.pop("n_scenarios", 32)
 
79
  assert "timestamps" in inputs and "open" in inputs and "high" in inputs and "low" in inputs and "close" in inputs and "volume" in inputs, "Required keys: timestamps, open, high, low, close, volume"
80
  assert isinstance(inputs["timestamps"], list) and isinstance(inputs["open"], list) and isinstance(inputs["high"], list) and isinstance(inputs["low"], list) and isinstance(inputs["close"], list) and isinstance(inputs["volume"], list), "Inputs must be lists"
81
  assert len(inputs["timestamps"]) == len(inputs["open"]) == len(inputs["high"]) == len(inputs["low"]) == len(inputs["close"]) == len(inputs["volume"]), "Inputs must have the same length"
82
+ timestamps = torch.tensor(list(map(int, inputs["timestamps"])))
83
  samples = torch.tensor([inputs["open"], inputs["high"], inputs["low"], inputs["close"], inputs["volume"]], dtype=torch.float32).T.contiguous()
84
  steps = data.pop("steps", 4)
85
  n_scenarios = data.pop("n_scenarios", 32)