Upload folder using huggingface_hub
Browse files- README.md +27 -3
- apogee/model.py +281 -0
- apogee/tokenizer.py +41 -0
- assets/candles_binance.BTCUSDT_1m.png +0 -0
- assets/candles_binance.BTCUSDT_8h.png +0 -0
- assets/candles_binance.DOGEUSDT_2h.png +0 -0
- ckpt.pt +3 -0
- handler.py +143 -0
README.md
CHANGED
|
@@ -1,3 +1,27 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- crypto
|
| 5 |
+
- deep-learning
|
| 6 |
+
- time-series
|
| 7 |
+
- forecasting
|
| 8 |
+
- transformer
|
| 9 |
+
- state-space-models
|
| 10 |
+
- open-source
|
| 11 |
+
- scaling-laws
|
| 12 |
+
library_name: transformers
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
<div align="center">
|
| 16 |
+
<a href="https://www.duonlabs.com" target="_blank">
|
| 17 |
+
<img src="https://www.duonlabs.com/theme/images/duon_white.png" width="30%" alt="Duon Labs Logo" />
|
| 18 |
+
</a>
|
| 19 |
+
</div>
|
| 20 |
+
<h1 align="center" style="font-size: 3rem;">Apogée: Crypto Market Candlestick Dataset</h1>
|
| 21 |
+
<hr>
|
| 22 |
+
|
| 23 |
+
## Overview
|
| 24 |
+
|
| 25 |
+
Most traders believe crypto is random, but deep learning scaling laws suggest otherwise. Apogée is an open-source research initiative exploring the **scaling laws of crypto market forecasting**. While financial markets are often assumed to be unpredictable, modern deep learning suggests that increasing data and compute could uncover measurable predictability.
|
| 26 |
+
Our goal is to **quantify how many bits of future price movement can be inferred** from historical candlestick data.
|
| 27 |
+
[More informations on Apogée](https://www.duonlabs.com/apogee)
|
apogee/model.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Full definition of a GPT Language Model, all of it in this single file.
|
| 3 |
+
References:
|
| 4 |
+
1) the official GPT-2 TensorFlow implementation released by OpenAI:
|
| 5 |
+
https://github.com/openai/gpt-2/blob/master/src/model.py
|
| 6 |
+
2) huggingface/transformers PyTorch implementation:
|
| 7 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
|
| 8 |
+
"""
|
| 9 |
+
import json
|
| 10 |
+
import math
|
| 11 |
+
import inspect
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
from typing import Optional, Union
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
from torch.nn import functional as F
|
| 18 |
+
|
| 19 |
+
class LayerNorm(torch.nn.Module):
|
| 20 |
+
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
|
| 21 |
+
|
| 22 |
+
def __init__(self, ndim, bias):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.weight = torch.nn.Parameter(torch.ones(ndim))
|
| 25 |
+
self.bias = torch.nn.Parameter(torch.zeros(ndim)) if bias else None
|
| 26 |
+
|
| 27 |
+
def forward(self, input):
|
| 28 |
+
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
|
| 29 |
+
|
| 30 |
+
class CausalSelfAttention(torch.nn.Module):
|
| 31 |
+
|
| 32 |
+
def __init__(self, config):
|
| 33 |
+
super().__init__()
|
| 34 |
+
assert config.n_embd % config.n_head == 0
|
| 35 |
+
# key, query, value projections for all heads, but in a batch
|
| 36 |
+
self.c_attn = torch.nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
| 37 |
+
# output projection
|
| 38 |
+
self.c_proj = torch.nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
| 39 |
+
# regularization
|
| 40 |
+
self.attn_dropout = torch.nn.Dropout(config.dropout)
|
| 41 |
+
self.resid_dropout = torch.nn.Dropout(config.dropout)
|
| 42 |
+
self.n_head = config.n_head
|
| 43 |
+
self.n_embd = config.n_embd
|
| 44 |
+
self.dropout = config.dropout
|
| 45 |
+
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
|
| 46 |
+
self.flash = hasattr(torch.torch.nn.functional, 'scaled_dot_product_attention')
|
| 47 |
+
if not self.flash:
|
| 48 |
+
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
| 49 |
+
# causal mask to ensure that attention is only applied to the left in the input sequence
|
| 50 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
| 51 |
+
.view(1, 1, config.block_size, config.block_size))
|
| 52 |
+
|
| 53 |
+
def forward(self, x):
|
| 54 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
| 55 |
+
|
| 56 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
| 57 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
| 58 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 59 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 60 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 61 |
+
|
| 62 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
| 63 |
+
if self.flash:
|
| 64 |
+
# efficient attention using Flash Attention CUDA kernels
|
| 65 |
+
y = torch.torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
|
| 66 |
+
else:
|
| 67 |
+
# manual implementation of attention
|
| 68 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
| 69 |
+
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
|
| 70 |
+
att = F.softmax(att, dim=-1)
|
| 71 |
+
att = self.attn_dropout(att)
|
| 72 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
| 73 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
| 74 |
+
|
| 75 |
+
# output projection
|
| 76 |
+
y = self.resid_dropout(self.c_proj(y))
|
| 77 |
+
return y
|
| 78 |
+
|
| 79 |
+
class MLP(torch.nn.Module):
|
| 80 |
+
|
| 81 |
+
def __init__(self, config):
|
| 82 |
+
super().__init__()
|
| 83 |
+
self.c_fc = torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
| 84 |
+
self.gelu = torch.nn.GELU()
|
| 85 |
+
self.c_proj = torch.nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
| 86 |
+
self.dropout = torch.nn.Dropout(config.dropout)
|
| 87 |
+
|
| 88 |
+
def forward(self, x):
|
| 89 |
+
x = self.c_fc(x)
|
| 90 |
+
x = self.gelu(x)
|
| 91 |
+
x = self.c_proj(x)
|
| 92 |
+
x = self.dropout(x)
|
| 93 |
+
return x
|
| 94 |
+
|
| 95 |
+
class Block(torch.nn.Module):
|
| 96 |
+
|
| 97 |
+
def __init__(self, config):
|
| 98 |
+
super().__init__()
|
| 99 |
+
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
|
| 100 |
+
self.attn = CausalSelfAttention(config)
|
| 101 |
+
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
|
| 102 |
+
self.mlp = MLP(config)
|
| 103 |
+
|
| 104 |
+
def forward(self, x):
|
| 105 |
+
x = x + self.attn(self.ln_1(x))
|
| 106 |
+
x = x + self.mlp(self.ln_2(x))
|
| 107 |
+
return x
|
| 108 |
+
|
| 109 |
+
@dataclass
|
| 110 |
+
class ModelConfig:
|
| 111 |
+
block_size: int
|
| 112 |
+
vocab_size: int
|
| 113 |
+
n_layer: int = 3
|
| 114 |
+
n_head: Optional[int] = None
|
| 115 |
+
head_dim: Optional[int] = None
|
| 116 |
+
n_embd: int = 384
|
| 117 |
+
dropout: float = 0.0
|
| 118 |
+
mup_base_dim: int = 128
|
| 119 |
+
bias: bool = False
|
| 120 |
+
|
| 121 |
+
class GPT(torch.nn.Module):
|
| 122 |
+
|
| 123 |
+
def __init__(self, config):
|
| 124 |
+
super().__init__()
|
| 125 |
+
assert config.vocab_size is not None
|
| 126 |
+
assert config.block_size is not None
|
| 127 |
+
assert config.n_head is not None or config.head_dim is not None
|
| 128 |
+
self.config = config
|
| 129 |
+
if config.n_head is None:
|
| 130 |
+
config.n_head = config.n_embd // config.head_dim
|
| 131 |
+
if config.head_dim is None:
|
| 132 |
+
config.head_dim = config.n_embd // config.n_head
|
| 133 |
+
|
| 134 |
+
self.transformer = torch.nn.ModuleDict(dict(
|
| 135 |
+
wte = torch.nn.Embedding(config.vocab_size, config.n_embd),
|
| 136 |
+
# wpe = torch.nn.Embedding(config.block_size, config.n_embd),
|
| 137 |
+
wbe = torch.nn.Embedding(4, config.n_embd),
|
| 138 |
+
wce = torch.nn.Embedding(5, config.n_embd),
|
| 139 |
+
wpe = torch.nn.Embedding(config.block_size // 20, config.n_embd),
|
| 140 |
+
drop = torch.nn.Dropout(config.dropout),
|
| 141 |
+
h = torch.nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
| 142 |
+
ln_f = LayerNorm(config.n_embd, bias=config.bias),
|
| 143 |
+
))
|
| 144 |
+
self.lm_head = torch.nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 145 |
+
# with weight tying when using torch.compile() some warnings get generated:
|
| 146 |
+
# "UserWarning: functional_call was passed multiple values for tied weights.
|
| 147 |
+
# This behavior is deprecated and will be an error in future versions"
|
| 148 |
+
# not 100% sure what this is, so far seems to be harmless. TODO investigate
|
| 149 |
+
self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
|
| 150 |
+
|
| 151 |
+
# init all weights
|
| 152 |
+
self.apply(self._init_weights)
|
| 153 |
+
# apply special scaled init to the residual projections, per GPT-2 paper
|
| 154 |
+
for pn, p in self.named_parameters():
|
| 155 |
+
if pn.endswith('c_proj.weight'):
|
| 156 |
+
torch.torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
|
| 157 |
+
|
| 158 |
+
# report number of parameters
|
| 159 |
+
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
|
| 160 |
+
|
| 161 |
+
def get_num_params(self, non_embedding=True):
|
| 162 |
+
"""
|
| 163 |
+
Return the number of parameters in the model.
|
| 164 |
+
For non-embedding count (default), the position embeddings get subtracted.
|
| 165 |
+
The token embeddings would too, except due to the parameter sharing these
|
| 166 |
+
params are actually used as weights in the final layer, so we include them.
|
| 167 |
+
"""
|
| 168 |
+
n_params = sum(p.numel() for p in self.parameters())
|
| 169 |
+
if non_embedding:
|
| 170 |
+
n_params -= self.transformer.wpe.weight.numel()
|
| 171 |
+
return n_params
|
| 172 |
+
|
| 173 |
+
def _init_weights(self, module):
|
| 174 |
+
if isinstance(module, torch.nn.Linear):
|
| 175 |
+
torch.torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 176 |
+
if module.bias is not None:
|
| 177 |
+
torch.torch.nn.init.zeros_(module.bias)
|
| 178 |
+
elif isinstance(module, torch.nn.Embedding):
|
| 179 |
+
torch.torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 180 |
+
|
| 181 |
+
def forward(self, idx):
|
| 182 |
+
device = idx.device
|
| 183 |
+
b, t = idx.size()
|
| 184 |
+
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
| 185 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
|
| 186 |
+
# forward the GPT model itself
|
| 187 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
| 188 |
+
# pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
|
| 189 |
+
pos_emb = self.transformer.wbe(pos % 4) + self.transformer.wce(pos // 4 % 5) + self.transformer.wpe(pos // 20)
|
| 190 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
| 191 |
+
for block in self.transformer.h:
|
| 192 |
+
x = block(x)
|
| 193 |
+
x = self.transformer.ln_f(x)
|
| 194 |
+
logits = self.lm_head(x)
|
| 195 |
+
return logits
|
| 196 |
+
|
| 197 |
+
def crop_block_size(self, block_size):
|
| 198 |
+
# model surgery to decrease the block size if necessary
|
| 199 |
+
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
|
| 200 |
+
# but want to use a smaller block size for some smaller, simpler model
|
| 201 |
+
assert block_size <= self.config.block_size
|
| 202 |
+
self.config.block_size = block_size
|
| 203 |
+
self.transformer.wpe.weight = torch.nn.Parameter(self.transformer.wpe.weight[:block_size])
|
| 204 |
+
for block in self.transformer.h:
|
| 205 |
+
if hasattr(block.attn, 'bias'):
|
| 206 |
+
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
|
| 207 |
+
|
| 208 |
+
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
|
| 209 |
+
# start with all of the candidate parameters
|
| 210 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
| 211 |
+
# filter out those that do not require grad
|
| 212 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
| 213 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
| 214 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
| 215 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
| 216 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
| 217 |
+
optim_groups = [
|
| 218 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
| 219 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
| 220 |
+
]
|
| 221 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
| 222 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
| 223 |
+
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
| 224 |
+
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
| 225 |
+
# Create AdamW optimizer and use the fused version if it is available
|
| 226 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
| 227 |
+
use_fused = fused_available and device_type.startswith('cuda')
|
| 228 |
+
extra_args = dict(fused=True) if use_fused else dict()
|
| 229 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
|
| 230 |
+
print(f"using fused AdamW: {use_fused}")
|
| 231 |
+
|
| 232 |
+
return optimizer
|
| 233 |
+
|
| 234 |
+
def estimate_mfu(self, fwdbwd_per_iter, dt):
|
| 235 |
+
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
|
| 236 |
+
# first estimate the number of flops we do per iteration.
|
| 237 |
+
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
|
| 238 |
+
N = self.get_num_params()
|
| 239 |
+
cfg = self.config
|
| 240 |
+
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
|
| 241 |
+
flops_per_token = 6*N + 12*L*H*Q*T
|
| 242 |
+
flops_per_fwdbwd = flops_per_token * T
|
| 243 |
+
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
|
| 244 |
+
# express our flops throughput as ratio of A100 bfloat16 peak flops
|
| 245 |
+
flops_achieved = flops_per_iter * (1.0/dt) # per second
|
| 246 |
+
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
|
| 247 |
+
mfu = flops_achieved / flops_promised
|
| 248 |
+
return mfu
|
| 249 |
+
|
| 250 |
+
@torch.no_grad()
|
| 251 |
+
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
| 252 |
+
"""
|
| 253 |
+
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
|
| 254 |
+
the sequence max_new_tokens times, feeding the predictions back into the model each time.
|
| 255 |
+
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
|
| 256 |
+
"""
|
| 257 |
+
for _ in range(max_new_tokens):
|
| 258 |
+
# if the sequence context is growing too long we must crop it at block_size
|
| 259 |
+
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
| 260 |
+
# forward the model to get the logits for the index in the sequence
|
| 261 |
+
logits = self(idx_cond)
|
| 262 |
+
# pluck the logits at the final step and scale by desired temperature
|
| 263 |
+
logits = logits[:, -1, :] / temperature
|
| 264 |
+
# optionally crop the logits to only the top k options
|
| 265 |
+
if top_k is not None:
|
| 266 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 267 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
| 268 |
+
# apply softmax to convert logits to (normalized) probabilities
|
| 269 |
+
probs = F.softmax(logits, dim=-1)
|
| 270 |
+
# sample from the distribution
|
| 271 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
| 272 |
+
# append sampled index to the running sequence and continue
|
| 273 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
| 274 |
+
|
| 275 |
+
return idx
|
| 276 |
+
|
| 277 |
+
@staticmethod
|
| 278 |
+
def from_config_file(config_file: Union[str, Path]):
|
| 279 |
+
with open(config_file, 'r') as f:
|
| 280 |
+
config_data = json.load(f)
|
| 281 |
+
return GPT(ModelConfig(**config_data))
|
apogee/tokenizer.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
from typing import Union
|
| 7 |
+
|
| 8 |
+
class Tokenizer:
|
| 9 |
+
@property
|
| 10 |
+
def vocabulary_size(self) -> int:
|
| 11 |
+
"""Return the size of the vocabulary"""
|
| 12 |
+
return 257
|
| 13 |
+
|
| 14 |
+
@property
|
| 15 |
+
def tokens_per_candle(self) -> int:
|
| 16 |
+
"""Return the number of tokens per candle"""
|
| 17 |
+
return 4 * 5
|
| 18 |
+
|
| 19 |
+
def encode(self, candles: Union[np.array, torch.Tensor]) -> torch.Tensor:
|
| 20 |
+
"""Tokenize candles into tokens."""
|
| 21 |
+
if isinstance(candles, np.ndarray): # Wrap into a tensor
|
| 22 |
+
candles = torch.tensor(candles)
|
| 23 |
+
candles = (candles.view(torch.int32) << 1).view(torch.float32) # Erase the sign bit to fit the exponent into the first byte
|
| 24 |
+
if sys.byteorder == 'little':# On little-endian systems, we need to byteswap the data so that msb is first
|
| 25 |
+
candles.untyped_storage().byteswap(torch.float32)
|
| 26 |
+
buffer = candles.view(torch.uint8) # Interpret the data as bytes ("tokenization" step)
|
| 27 |
+
buffer = buffer.view(-1).to(torch.uint16) # Flatten the data and convert to uint16 because otherwise <BOS> will overflow
|
| 28 |
+
buffer = torch.cat([torch.tensor([256], dtype=torch.uint16), buffer]) # Prepend <BOS> (Begin of Series) token
|
| 29 |
+
return buffer
|
| 30 |
+
|
| 31 |
+
def decode(self, tokens: torch.Tensor) -> torch.Tensor:
|
| 32 |
+
"""Decode tokens into candles."""
|
| 33 |
+
tokens = tokens.long()
|
| 34 |
+
candles_tokens = tokens[..., 1:] # Remove <BOS> token
|
| 35 |
+
candles_tokens = candles_tokens.to(torch.uint8).view(*tokens.shape[:-1], -1, self.tokens_per_candle) # Convert back to uint8 and reshape
|
| 36 |
+
candles_tokens = candles_tokens.view(torch.float32) # Interpret the data as floats
|
| 37 |
+
if sys.byteorder == 'little': # On little-endian systems, we need to byteswap the data back
|
| 38 |
+
# candles_tokens.untyped_storage().byteswap(torch.float32) # <-- This segfaults for some reason
|
| 39 |
+
candles_tokens = candles_tokens.view(torch.uint8).view(*candles_tokens.shape, 4).flip(-1).view(torch.float32).squeeze(-1)# Workaround
|
| 40 |
+
candles_tokens = -((candles_tokens.view(torch.int32) >> 1) | (1 << 31)).view(torch.float32) # Restore the sign bit
|
| 41 |
+
return candles_tokens
|
assets/candles_binance.BTCUSDT_1m.png
ADDED
|
assets/candles_binance.BTCUSDT_8h.png
ADDED
|
assets/candles_binance.DOGEUSDT_2h.png
ADDED
|
ckpt.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb44264a9b2d3215978459a20f6ac5b3ce56a6cf89ffb3b863ea1e7770c7563c
|
| 3 |
+
size 28918050
|
handler.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from contextlib import nullcontext
|
| 2 |
+
import time
|
| 3 |
+
import torch
|
| 4 |
+
from apogee.tokenizer import Tokenizer
|
| 5 |
+
from apogee.model import GPT, ModelConfig
|
| 6 |
+
|
| 7 |
+
from typing import Any, Dict, Optional, Union
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
| 11 |
+
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
| 12 |
+
|
| 13 |
+
class ApogeeHandler:
|
| 14 |
+
"""
|
| 15 |
+
Handler class.
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
def __init__(self, base_path: Optional[Union[str, Path]] = None, device: Optional[str] = None):
|
| 19 |
+
if base_path is None:
|
| 20 |
+
base_path = Path(__file__).parent
|
| 21 |
+
self.base_path = Path(base_path)
|
| 22 |
+
# Get the device
|
| 23 |
+
if device is None:
|
| 24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
+
self.device = device
|
| 26 |
+
print(f"Handler spwaned on device {self.device} 🚀")
|
| 27 |
+
ckpt_path = self.base_path / "ckpt.pt"
|
| 28 |
+
print(f"Loading model from {ckpt_path} 🤖")
|
| 29 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
| 30 |
+
self.config = ModelConfig(**checkpoint["model_config"])
|
| 31 |
+
self.tokenizer = Tokenizer()
|
| 32 |
+
self.model = GPT(self.config)
|
| 33 |
+
state_dict = checkpoint['model']
|
| 34 |
+
unwanted_prefix = '_orig_mod.'
|
| 35 |
+
for k in list(state_dict.keys()):
|
| 36 |
+
if k.startswith(unwanted_prefix):
|
| 37 |
+
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
| 38 |
+
self.model.load_state_dict(state_dict)
|
| 39 |
+
self.model.eval()
|
| 40 |
+
self.model.to(self.device)
|
| 41 |
+
self.model = torch.compile(self.model)
|
| 42 |
+
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16'
|
| 43 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
| 44 |
+
self.ctx = nullcontext() if device == 'cpu' else torch.amp.autocast(device_type=device, dtype=ptdtype)
|
| 45 |
+
print("Warming up hardware 🔥")
|
| 46 |
+
with torch.no_grad(), self.ctx:
|
| 47 |
+
self.model(torch.randint(0, self.tokenizer.vocabulary_size, (1, self.config.block_size), device=self.device))
|
| 48 |
+
print("Model ready ! ✅")
|
| 49 |
+
# Precompute useful values
|
| 50 |
+
self.max_candles = self.config.block_size // self.tokenizer.tokens_per_candle
|
| 51 |
+
|
| 52 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 53 |
+
"""
|
| 54 |
+
Args:
|
| 55 |
+
data (Dict[str, Any]):
|
| 56 |
+
inputs: Dict[str, List[float]] with keys:
|
| 57 |
+
timestamps: Timestamps of the time serie
|
| 58 |
+
open: Open prices
|
| 59 |
+
high: High prices
|
| 60 |
+
low: Low prices
|
| 61 |
+
close: Close prices
|
| 62 |
+
volume: Volumes
|
| 63 |
+
steps: int = 4 | Number of sampling steps
|
| 64 |
+
n_scenarios: int = 32 | Number of scenarios to generate
|
| 65 |
+
seed: Optional[int] = None | Seed for the random number generator
|
| 66 |
+
Return:
|
| 67 |
+
Dict[str, Any] Generated scenarios with keys:
|
| 68 |
+
timestamps: Timestamps of the time serie
|
| 69 |
+
open: Open prices
|
| 70 |
+
high: High prices
|
| 71 |
+
low: Low prices
|
| 72 |
+
close: Close prices
|
| 73 |
+
volume: Volumes
|
| 74 |
+
"""
|
| 75 |
+
t_start = time.time() # Start the timer
|
| 76 |
+
# Unpack input data
|
| 77 |
+
inputs = data.pop("inputs", data)
|
| 78 |
+
# Validate the inputs
|
| 79 |
+
assert "timestamps" in inputs and "open" in inputs and "high" in inputs and "low" in inputs and "close" in inputs and "volume" in inputs, "Required keys: timestamps, open, high, low, close, volume"
|
| 80 |
+
assert isinstance(inputs["timestamps"], list) and isinstance(inputs["open"], list) and isinstance(inputs["high"], list) and isinstance(inputs["low"], list) and isinstance(inputs["close"], list) and isinstance(inputs["volume"], list), "Inputs must be lists"
|
| 81 |
+
assert len(inputs["timestamps"]) == len(inputs["open"]) == len(inputs["high"]) == len(inputs["low"]) == len(inputs["close"]) == len(inputs["volume"]), "Inputs must have the same length"
|
| 82 |
+
timestamps = torch.tensor(inputs["timestamps"])
|
| 83 |
+
samples = torch.tensor([inputs["open"], inputs["high"], inputs["low"], inputs["close"], inputs["volume"]], dtype=torch.float32).T.contiguous()
|
| 84 |
+
steps = data.pop("steps", 4)
|
| 85 |
+
n_scenarios = data.pop("n_scenarios", 32)
|
| 86 |
+
seed = data.pop("seed", None)
|
| 87 |
+
# Validate the params
|
| 88 |
+
assert isinstance(steps, int) and steps > 0, "steps must be a positive integer"
|
| 89 |
+
assert isinstance(n_scenarios, int) and n_scenarios > 0, "n_scenarios must be a positive integer"
|
| 90 |
+
if seed is not None:
|
| 91 |
+
assert isinstance(seed, int), "seed must be an integer"
|
| 92 |
+
torch.manual_seed(seed)
|
| 93 |
+
torch.cuda.manual_seed(seed)
|
| 94 |
+
# Generate scenarios
|
| 95 |
+
samples = samples[-self.max_candles + steps:] # Keep only the last candles that fit in the model's context
|
| 96 |
+
tokens = self.tokenizer.encode(samples) # Encode the samples into tokens
|
| 97 |
+
tokens = tokens.to(self.device).unsqueeze(0).long() # Add a batch dimension
|
| 98 |
+
with torch.no_grad(), self.ctx:
|
| 99 |
+
for _ in range(steps * self.tokenizer.tokens_per_candle):
|
| 100 |
+
assert tokens.shape[1] <= self.config.block_size, "Too many tokens in the sequence"
|
| 101 |
+
logits = self.model(tokens) # forward the model to get the logits for the index in the sequence
|
| 102 |
+
logits = logits[:, -1, :] # pluck the logits at the final step
|
| 103 |
+
# apply softmax to convert logits to (normalized) probabilities
|
| 104 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 105 |
+
# sample from the distribution
|
| 106 |
+
if probs.shape[0] != n_scenarios:
|
| 107 |
+
next_tokens = torch.multinomial(probs, num_samples=n_scenarios, replacement=True).T
|
| 108 |
+
tokens = tokens.expand(n_scenarios, -1)
|
| 109 |
+
else:
|
| 110 |
+
next_tokens = torch.multinomial(probs, num_samples=1)
|
| 111 |
+
# append sampled index to the running sequence and continue
|
| 112 |
+
tokens = torch.cat((tokens, next_tokens), dim=1)
|
| 113 |
+
# Decode the tokens back into samples
|
| 114 |
+
scenarios = self.tokenizer.decode(tokens)[:, -steps:]
|
| 115 |
+
print(f"Generated {n_scenarios} scenarios in {time.time() - t_start:.2f} seconds ⏱")
|
| 116 |
+
return {
|
| 117 |
+
"timestamps": (timestamps[-1] + torch.arange(1, steps+1) * torch.median(torch.diff(timestamps)).item()).tolist(),
|
| 118 |
+
"open": scenarios[:, :, 0].tolist(),
|
| 119 |
+
"high": scenarios[:, :, 1].tolist(),
|
| 120 |
+
"low": scenarios[:, :, 2].tolist(),
|
| 121 |
+
"close": scenarios[:, :, 3].tolist(),
|
| 122 |
+
"volume": scenarios[:, :, 4].tolist()
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
if __name__ == "__main__":
|
| 126 |
+
import pandas as pd
|
| 127 |
+
handler = ApogeeHandler()
|
| 128 |
+
test_path = Path(__file__).parents[2] / "tests" / "assets" / "BTCUSDT-1m-2019-03.csv"
|
| 129 |
+
with open(test_path, "r") as f:
|
| 130 |
+
data = pd.read_csv(f)
|
| 131 |
+
y = handler({
|
| 132 |
+
"inputs": {
|
| 133 |
+
"timestamps": data[data.columns[0]].tolist(),
|
| 134 |
+
"open": data[data.columns[1]].tolist(),
|
| 135 |
+
"high": data[data.columns[2]].tolist(),
|
| 136 |
+
"low": data[data.columns[3]].tolist(),
|
| 137 |
+
"close": data[data.columns[4]].tolist(),
|
| 138 |
+
"volume": data[data.columns[5]].tolist()
|
| 139 |
+
},
|
| 140 |
+
"steps": 4,
|
| 141 |
+
"n_scenarios": 64,
|
| 142 |
+
"seed": 42
|
| 143 |
+
})
|