dudududukim
commited on
Commit
•
d7784c4
1
Parent(s):
2b383ee
ver10.2
Browse files- model_bert_concat/__init__.py +0 -0
- model_bert_concat/__pycache__/__init__.cpython-310.pyc +0 -0
- model_bert_concat/__pycache__/configuration_bert_concat.cpython-310.pyc +0 -0
- model_bert_concat/__pycache__/modeling_bert_concat.cpython-310.pyc +0 -0
- model_bert_concat/configuration_bert_concat.py +7 -0
- model_bert_concat/modeling_bert_concat.py +53 -0
model_bert_concat/__init__.py
ADDED
File without changes
|
model_bert_concat/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (181 Bytes). View file
|
|
model_bert_concat/__pycache__/configuration_bert_concat.cpython-310.pyc
ADDED
Binary file (698 Bytes). View file
|
|
model_bert_concat/__pycache__/modeling_bert_concat.cpython-310.pyc
ADDED
Binary file (1.9 kB). View file
|
|
model_bert_concat/configuration_bert_concat.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class BertConcatConfig(PretrainedConfig):
|
4 |
+
def __init__(self, bert_model_name='klue/bert-base', num_labels=2, **kwargs):
|
5 |
+
super().__init__(**kwargs)
|
6 |
+
self.bert_model_name = bert_model_name
|
7 |
+
self.num_labels = num_labels
|
model_bert_concat/modeling_bert_concat.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel, AutoModel
|
2 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from .configuration_bert_concat import BertConcatConfig
|
6 |
+
|
7 |
+
|
8 |
+
class BertConcatClassifier(PreTrainedModel):
|
9 |
+
config_class = BertConcatConfig
|
10 |
+
|
11 |
+
def __init__(self, config):
|
12 |
+
super().__init__(config)
|
13 |
+
self.bert = AutoModel.from_pretrained(config.bert_model_name, output_hidden_states=True)
|
14 |
+
self.num_labels = config.num_labels
|
15 |
+
|
16 |
+
# Classification layers
|
17 |
+
self.conv = nn.Conv1d(in_channels=3, out_channels=1, kernel_size=1) # 3x768 -> 1x768
|
18 |
+
self.relu = nn.ReLU()
|
19 |
+
self.classifier = nn.Linear(768, self.num_labels)
|
20 |
+
|
21 |
+
def forward(self, input_ids, attention_mask=None, labels=None):
|
22 |
+
outputs = self.bert(input_ids, attention_mask=attention_mask)
|
23 |
+
hidden_states = outputs.hidden_states
|
24 |
+
|
25 |
+
# Concatenate the vectors as per custom model design
|
26 |
+
last_cls_vector = hidden_states[-1][:, 0, :]
|
27 |
+
fourth_last_cls_vector = hidden_states[-4][:, 0, :]
|
28 |
+
mean_pooled_vector = hidden_states[-1].mean(dim=1)
|
29 |
+
|
30 |
+
concatenated_vector = torch.cat(
|
31 |
+
(last_cls_vector.unsqueeze(1),
|
32 |
+
fourth_last_cls_vector.unsqueeze(1),
|
33 |
+
mean_pooled_vector.unsqueeze(1)),
|
34 |
+
dim=1
|
35 |
+
)
|
36 |
+
|
37 |
+
# Apply convolution and linear layers
|
38 |
+
conv_output = self.conv(concatenated_vector).squeeze(2)
|
39 |
+
relu_output = self.relu(conv_output)
|
40 |
+
logits = self.classifier(relu_output)
|
41 |
+
logits = logits.squeeze(1)
|
42 |
+
|
43 |
+
loss = None
|
44 |
+
if labels is not None:
|
45 |
+
loss_fct = nn.CrossEntropyLoss()
|
46 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
47 |
+
|
48 |
+
return SequenceClassifierOutput(
|
49 |
+
loss=loss,
|
50 |
+
logits=logits,
|
51 |
+
hidden_states=outputs.hidden_states,
|
52 |
+
attentions=outputs.attentions
|
53 |
+
)
|