update model card README.md
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,91 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: apache-2.0
         | 
| 3 | 
            +
            tags:
         | 
| 4 | 
            +
            - generated_from_trainer
         | 
| 5 | 
            +
            datasets:
         | 
| 6 | 
            +
            - conll2003
         | 
| 7 | 
            +
            metrics:
         | 
| 8 | 
            +
            - precision
         | 
| 9 | 
            +
            - recall
         | 
| 10 | 
            +
            - f1
         | 
| 11 | 
            +
            - accuracy
         | 
| 12 | 
            +
            model-index:
         | 
| 13 | 
            +
            - name: ner-from-bert
         | 
| 14 | 
            +
              results:
         | 
| 15 | 
            +
              - task:
         | 
| 16 | 
            +
                  name: Token Classification
         | 
| 17 | 
            +
                  type: token-classification
         | 
| 18 | 
            +
                dataset:
         | 
| 19 | 
            +
                  name: conll2003
         | 
| 20 | 
            +
                  type: conll2003
         | 
| 21 | 
            +
                  config: conll2003
         | 
| 22 | 
            +
                  split: train
         | 
| 23 | 
            +
                  args: conll2003
         | 
| 24 | 
            +
                metrics:
         | 
| 25 | 
            +
                - name: Precision
         | 
| 26 | 
            +
                  type: precision
         | 
| 27 | 
            +
                  value: 0.9350885908262957
         | 
| 28 | 
            +
                - name: Recall
         | 
| 29 | 
            +
                  type: recall
         | 
| 30 | 
            +
                  value: 0.9503534163581285
         | 
| 31 | 
            +
                - name: F1
         | 
| 32 | 
            +
                  type: f1
         | 
| 33 | 
            +
                  value: 0.9426592104164928
         | 
| 34 | 
            +
                - name: Accuracy
         | 
| 35 | 
            +
                  type: accuracy
         | 
| 36 | 
            +
                  value: 0.9859451345146288
         | 
| 37 | 
            +
            ---
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            <!-- This model card has been generated automatically according to the information the Trainer had access to. You
         | 
| 40 | 
            +
            should probably proofread and complete it, then remove this comment. -->
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            # ner-from-bert
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
         | 
| 45 | 
            +
            It achieves the following results on the evaluation set:
         | 
| 46 | 
            +
            - Loss: 0.0615
         | 
| 47 | 
            +
            - Precision: 0.9351
         | 
| 48 | 
            +
            - Recall: 0.9504
         | 
| 49 | 
            +
            - F1: 0.9427
         | 
| 50 | 
            +
            - Accuracy: 0.9859
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            ## Model description
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            More information needed
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            ## Intended uses & limitations
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            More information needed
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            ## Training and evaluation data
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            More information needed
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            ## Training procedure
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            ### Training hyperparameters
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            The following hyperparameters were used during training:
         | 
| 69 | 
            +
            - learning_rate: 2e-05
         | 
| 70 | 
            +
            - train_batch_size: 8
         | 
| 71 | 
            +
            - eval_batch_size: 8
         | 
| 72 | 
            +
            - seed: 42
         | 
| 73 | 
            +
            - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
         | 
| 74 | 
            +
            - lr_scheduler_type: linear
         | 
| 75 | 
            +
            - num_epochs: 3
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            ### Training results
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
         | 
| 80 | 
            +
            |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
         | 
| 81 | 
            +
            | 0.0879        | 1.0   | 1756 | 0.0685          | 0.9170    | 0.9320 | 0.9245 | 0.9815   |
         | 
| 82 | 
            +
            | 0.0328        | 2.0   | 3512 | 0.0625          | 0.9267    | 0.9495 | 0.9380 | 0.9853   |
         | 
| 83 | 
            +
            | 0.0189        | 3.0   | 5268 | 0.0615          | 0.9351    | 0.9504 | 0.9427 | 0.9859   |
         | 
| 84 | 
            +
             | 
| 85 | 
            +
             | 
| 86 | 
            +
            ### Framework versions
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            - Transformers 4.25.1
         | 
| 89 | 
            +
            - Pytorch 1.13.0+cu116
         | 
| 90 | 
            +
            - Datasets 2.8.0
         | 
| 91 | 
            +
            - Tokenizers 0.13.2
         |