dsmsb commited on
Commit
db0432d
·
1 Parent(s): a95ce01

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-multilingual-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: tweet_bert_1408
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # tweet_bert_1408
17
+
18
+ This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.7067
21
+ - Accuracy: 0.8477
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 16
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 5
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | No log | 1.0 | 397 | 0.7847 | 0.8363 |
53
+ | 0.2479 | 2.0 | 794 | 0.6668 | 0.8422 |
54
+ | 0.2971 | 3.0 | 1191 | 0.6221 | 0.8481 |
55
+ | 0.2087 | 4.0 | 1588 | 0.6557 | 0.8488 |
56
+ | 0.2087 | 5.0 | 1985 | 0.7067 | 0.8477 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.31.0
62
+ - Pytorch 2.0.1+cu118
63
+ - Datasets 2.14.4
64
+ - Tokenizers 0.13.3