update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- samsum
|
6 |
+
model-index:
|
7 |
+
- name: pegasus-samsum
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# pegasus-samsum
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.4251
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 5e-05
|
38 |
+
- train_batch_size: 1
|
39 |
+
- eval_batch_size: 1
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 16
|
42 |
+
- total_train_batch_size: 16
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 500
|
46 |
+
- num_epochs: 1
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
52 |
+
| 3.1284 | 0.01 | 10 | 2.5960 |
|
53 |
+
| 3.122 | 0.02 | 20 | 2.5579 |
|
54 |
+
| 3.0196 | 0.03 | 30 | 2.4983 |
|
55 |
+
| 2.9803 | 0.04 | 40 | 2.4197 |
|
56 |
+
| 2.8471 | 0.05 | 50 | 2.3258 |
|
57 |
+
| 2.7692 | 0.07 | 60 | 2.2438 |
|
58 |
+
| 2.682 | 0.08 | 70 | 2.1608 |
|
59 |
+
| 2.3648 | 0.09 | 80 | 2.0838 |
|
60 |
+
| 2.5696 | 0.1 | 90 | 2.0222 |
|
61 |
+
| 2.3403 | 0.11 | 100 | 1.9713 |
|
62 |
+
| 2.2036 | 0.12 | 110 | 1.9199 |
|
63 |
+
| 2.1998 | 0.13 | 120 | 1.8750 |
|
64 |
+
| 2.3006 | 0.14 | 130 | 1.8382 |
|
65 |
+
| 2.1182 | 0.15 | 140 | 1.8050 |
|
66 |
+
| 2.1493 | 0.16 | 150 | 1.7748 |
|
67 |
+
| 2.0437 | 0.17 | 160 | 1.7494 |
|
68 |
+
| 1.9236 | 0.18 | 170 | 1.7289 |
|
69 |
+
| 2.0114 | 0.2 | 180 | 1.7106 |
|
70 |
+
| 1.9939 | 0.21 | 190 | 1.6906 |
|
71 |
+
| 1.928 | 0.22 | 200 | 1.6737 |
|
72 |
+
| 1.9444 | 0.23 | 210 | 1.6603 |
|
73 |
+
| 1.9071 | 0.24 | 220 | 1.6485 |
|
74 |
+
| 1.8314 | 0.25 | 230 | 1.6369 |
|
75 |
+
| 1.8085 | 0.26 | 240 | 1.6277 |
|
76 |
+
| 1.7493 | 0.27 | 250 | 1.6203 |
|
77 |
+
| 1.8539 | 0.28 | 260 | 1.6089 |
|
78 |
+
| 1.7048 | 0.29 | 270 | 1.5999 |
|
79 |
+
| 1.7486 | 0.3 | 280 | 1.5921 |
|
80 |
+
| 1.795 | 0.31 | 290 | 1.5842 |
|
81 |
+
| 1.6613 | 0.33 | 300 | 1.5815 |
|
82 |
+
| 1.8163 | 0.34 | 310 | 1.5732 |
|
83 |
+
| 1.6133 | 0.35 | 320 | 1.5621 |
|
84 |
+
| 1.8 | 0.36 | 330 | 1.5542 |
|
85 |
+
| 1.7159 | 0.37 | 340 | 1.5506 |
|
86 |
+
| 1.8081 | 0.38 | 350 | 1.5483 |
|
87 |
+
| 1.7365 | 0.39 | 360 | 1.5451 |
|
88 |
+
| 1.7334 | 0.4 | 370 | 1.5405 |
|
89 |
+
| 1.7329 | 0.41 | 380 | 1.5334 |
|
90 |
+
| 1.6923 | 0.42 | 390 | 1.5259 |
|
91 |
+
| 1.6868 | 0.43 | 400 | 1.5227 |
|
92 |
+
| 1.7033 | 0.45 | 410 | 1.5163 |
|
93 |
+
| 1.6805 | 0.46 | 420 | 1.5144 |
|
94 |
+
| 1.6056 | 0.47 | 430 | 1.5126 |
|
95 |
+
| 1.7317 | 0.48 | 440 | 1.5086 |
|
96 |
+
| 1.6303 | 0.49 | 450 | 1.5015 |
|
97 |
+
| 1.7136 | 0.5 | 460 | 1.4943 |
|
98 |
+
| 1.534 | 0.51 | 470 | 1.4910 |
|
99 |
+
| 1.6682 | 0.52 | 480 | 1.4917 |
|
100 |
+
| 1.6234 | 0.53 | 490 | 1.4885 |
|
101 |
+
| 1.7103 | 0.54 | 500 | 1.4857 |
|
102 |
+
| 1.7673 | 0.55 | 510 | 1.4800 |
|
103 |
+
| 1.6631 | 0.56 | 520 | 1.4776 |
|
104 |
+
| 1.7073 | 0.58 | 530 | 1.4745 |
|
105 |
+
| 1.6843 | 0.59 | 540 | 1.4698 |
|
106 |
+
| 1.6849 | 0.6 | 550 | 1.4679 |
|
107 |
+
| 1.6054 | 0.61 | 560 | 1.4642 |
|
108 |
+
| 1.6073 | 0.62 | 570 | 1.4629 |
|
109 |
+
| 1.5896 | 0.63 | 580 | 1.4591 |
|
110 |
+
| 1.608 | 0.64 | 590 | 1.4580 |
|
111 |
+
| 1.58 | 0.65 | 600 | 1.4548 |
|
112 |
+
| 1.5722 | 0.66 | 610 | 1.4548 |
|
113 |
+
| 1.5529 | 0.67 | 620 | 1.4542 |
|
114 |
+
| 1.5948 | 0.68 | 630 | 1.4518 |
|
115 |
+
| 1.5869 | 0.7 | 640 | 1.4489 |
|
116 |
+
| 1.577 | 0.71 | 650 | 1.4488 |
|
117 |
+
| 1.6517 | 0.72 | 660 | 1.4477 |
|
118 |
+
| 1.5955 | 0.73 | 670 | 1.4436 |
|
119 |
+
| 1.5678 | 0.74 | 680 | 1.4402 |
|
120 |
+
| 1.6743 | 0.75 | 690 | 1.4384 |
|
121 |
+
| 1.5791 | 0.76 | 700 | 1.4374 |
|
122 |
+
| 1.6397 | 0.77 | 710 | 1.4380 |
|
123 |
+
| 1.5637 | 0.78 | 720 | 1.4363 |
|
124 |
+
| 1.5849 | 0.79 | 730 | 1.4356 |
|
125 |
+
| 1.5815 | 0.8 | 740 | 1.4350 |
|
126 |
+
| 1.5797 | 0.81 | 750 | 1.4362 |
|
127 |
+
| 1.5551 | 0.83 | 760 | 1.4354 |
|
128 |
+
| 1.5486 | 0.84 | 770 | 1.4341 |
|
129 |
+
| 1.5756 | 0.85 | 780 | 1.4320 |
|
130 |
+
| 1.5326 | 0.86 | 790 | 1.4300 |
|
131 |
+
| 1.6198 | 0.87 | 800 | 1.4290 |
|
132 |
+
| 1.5947 | 0.88 | 810 | 1.4288 |
|
133 |
+
| 1.6326 | 0.89 | 820 | 1.4291 |
|
134 |
+
| 1.6231 | 0.9 | 830 | 1.4288 |
|
135 |
+
| 1.597 | 0.91 | 840 | 1.4281 |
|
136 |
+
| 1.5781 | 0.92 | 850 | 1.4273 |
|
137 |
+
| 1.6835 | 0.93 | 860 | 1.4260 |
|
138 |
+
| 1.5373 | 0.94 | 870 | 1.4257 |
|
139 |
+
| 1.5458 | 0.96 | 880 | 1.4252 |
|
140 |
+
| 1.4953 | 0.97 | 890 | 1.4252 |
|
141 |
+
| 1.5299 | 0.98 | 900 | 1.4252 |
|
142 |
+
| 1.5853 | 0.99 | 910 | 1.4251 |
|
143 |
+
| 1.5723 | 1.0 | 920 | 1.4251 |
|
144 |
+
|
145 |
+
|
146 |
+
### Framework versions
|
147 |
+
|
148 |
+
- Transformers 4.18.0
|
149 |
+
- Pytorch 1.11.0
|
150 |
+
- Datasets 1.18.4
|
151 |
+
- Tokenizers 0.12.1
|