|
""" |
|
MODIFIED: (efv) Use STSb-multi-mt Spanish |
|
source: https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark.py |
|
--- |
|
This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It generates sentence embeddings |
|
that can be compared using cosine-similarity to measure the similarity. |
|
Usage: |
|
python training_nli.py |
|
OR |
|
python training_nli.py pretrained_transformer_model_name |
|
""" |
|
from torch.utils.data import DataLoader |
|
import math |
|
from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util |
|
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator |
|
from sentence_transformers.readers import InputExample |
|
import logging |
|
from datetime import datetime |
|
import sys |
|
import os |
|
import gzip |
|
import csv |
|
|
|
from datasets import load_dataset |
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO, |
|
handlers=[LoggingHandler()]) |
|
|
|
|
|
|
|
|
|
|
|
model_name = sys.argv[1] if len(sys.argv) > 1 else 'distilbert-base-uncased' |
|
|
|
|
|
train_batch_size = 16 |
|
num_epochs = 4 |
|
model_save_path = 'output/training_stsbenchmark_'+model_name.replace("/", "-")+'-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
|
|
|
|
word_embedding_model = models.Transformer(model_name) |
|
|
|
|
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), |
|
pooling_mode_mean_tokens=True, |
|
pooling_mode_cls_token=False, |
|
pooling_mode_max_tokens=False) |
|
|
|
model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) |
|
|
|
|
|
logging.info("Read stsb-multi-mt train dataset de mis documentos") |
|
|
|
train_samples = [] |
|
dev_samples = [] |
|
test_samples = [] |
|
|
|
def samples_from_dataset(dataset): |
|
samples = [InputExample(texts=[e['sentence1'], e['sentence2']], label=e['similarity_score'] / 5) \ |
|
for e in dataset] |
|
return samples |
|
|
|
print("vamos a cargar") |
|
train_samples = load_dataset("csv", name="Bases_dades\Catala\stsb-ca-train.csv",split="train", column_names = ['sentence1', 'sentence2', 'similarity_score'] ) |
|
print("cargada dataset") |
|
train_samples = samples_from_dataset(train_samples) |
|
print("Samples del train creades") |
|
print("Cargar dev samples") |
|
dev_samples = samples_from_dataset(load_dataset("csv", name="Bases_dades\Catala\stsb-ca-dev.csv", split="validation", column_names = ['sentence1', 'sentence2', 'similarity_score'])) |
|
print("dev samples creades") |
|
print("Cargar test samples") |
|
test_samples = samples_from_dataset(load_dataset("csv", name="Bases_dades\Catala\stsb-ca-test.csv", split="test", column_names = ['sentence1', 'sentence2', 'similarity_score'])) |
|
print("Test samples creades") |
|
|
|
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) |
|
train_loss = losses.CosineSimilarityLoss(model=model) |
|
|
|
|
|
logging.info("Read stsb-multi-mt dev dataset") |
|
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') |
|
|
|
|
|
|
|
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) |
|
logging.info("Warmup-steps: {}".format(warmup_steps)) |
|
|
|
|
|
|
|
model.fit(train_objectives=[(train_dataloader, train_loss)], |
|
evaluator=evaluator, |
|
epochs=num_epochs, |
|
evaluation_steps=1000, |
|
warmup_steps=warmup_steps, |
|
output_path=model_save_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='stsb-multi-mt-test') |
|
test_evaluator(model, output_path=model_save_path) |
|
|