import numpy as np | |
import pandas as pd | |
import tensorflow as tf | |
# Load the trained GRU model | |
loaded_model = tf.keras.models.load_model('save/gru_model.keras') | |
# Load new data for prediction | |
new_data = pd.read_csv('input/data.csv') # Replace with the path to your new data CSV file | |
# Preprocess the new data (similar to how you preprocessed the training data) | |
# Assuming the new_data has the same features as the training data | |
X_new = new_data.drop('label', axis=1) | |
# Make predictions on new data | |
predicted_labels = loaded_model.predict_classes(X_new) | |
# Map predicted labels back to emotions using the label_mapping dictionary | |
reverse_label_mapping = {v: k for k, v in label_mapping.items()} | |
predicted_emotions = [reverse_label_mapping[label] for label in predicted_labels] | |
# Add predicted emotions to the new_data DataFrame | |
new_data['predicted_emotion'] = predicted_emotions | |
# Print the new_data DataFrame with predicted emotions | |
print(new_data) | |