dreamerdeo commited on
Commit
399b48d
1 Parent(s): e56f33a
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/t5-xl-lm-adapt",
3
+ "architectures": [
4
+ "T5ForConditionalGeneration"
5
+ ],
6
+ "d_ff": 5120,
7
+ "d_kv": 64,
8
+ "d_model": 2048,
9
+ "decoder_start_token_id": 0,
10
+ "dropout_rate": 0.1,
11
+ "eos_token_id": 1,
12
+ "feed_forward_proj": "gated-gelu",
13
+ "gradient_checkpointing": true,
14
+ "initializer_factor": 1.0,
15
+ "is_encoder_decoder": true,
16
+ "layer_norm_epsilon": 1e-06,
17
+ "max_length": 512,
18
+ "model_type": "t5",
19
+ "num_decoder_layers": 24,
20
+ "num_heads": 32,
21
+ "num_layers": 24,
22
+ "output_past": true,
23
+ "pad_token_id": 0,
24
+ "relative_attention_num_buckets": 32,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "float16",
27
+ "transformers_version": "4.9.1",
28
+ "use_cache": false,
29
+ "vocab_size": 32128
30
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1335
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bdbd622b49608641ce70036489106a835e03342686028c1686c5987fa1e00f9
3
+ size 5699709115
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:879b3d44968be70784fb13d5e18ff98a9044e7d9d20da97ee1347d0ca11d4376
3
+ size 14654
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ceadd58a1b326b4481eac4a5ea8dcc47f3859a8196c57df16720076976b2a9e7
3
+ size 14654
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22412da0ce046caaade62bf68fa7a4bee9643a441b80dc0009133b3997dcc1bd
3
+ size 14654
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54f6cf989efd1cb00d28079e567953eea428deda220c8b710a0a654777b56834
3
+ size 14654
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 100, "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"], "sp_model_kwargs": {}, "model_max_length": 512, "name_or_path": "google/t5-xl-lm-adapt", "special_tokens_map_file": "/home/patrick/.cache/huggingface/transformers/e88f2448cc299b3d5844700ccb67f86e37caa0873ebab334ad4e881fd84f1abf.c94798918c92ded6aeef2d2f0e666d2cc4145eca1aa6e1336fde07f2e13e2f46", "tokenizer_class": "T5Tokenizer"}
trainer_state.json ADDED
@@ -0,0 +1,944 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 106.63897763578275,
5
+ "global_step": 1280,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.8,
12
+ "learning_rate": 9.99969999399988e-05,
13
+ "loss": 3.2772,
14
+ "step": 10
15
+ },
16
+ {
17
+ "epoch": 1.64,
18
+ "learning_rate": 9.99869997399948e-05,
19
+ "loss": 0.587,
20
+ "step": 20
21
+ },
22
+ {
23
+ "epoch": 2.48,
24
+ "learning_rate": 9.99759995199904e-05,
25
+ "loss": 0.2432,
26
+ "step": 30
27
+ },
28
+ {
29
+ "epoch": 3.32,
30
+ "learning_rate": 9.99659993199864e-05,
31
+ "loss": 0.1511,
32
+ "step": 40
33
+ },
34
+ {
35
+ "epoch": 4.16,
36
+ "learning_rate": 9.9954999099982e-05,
37
+ "loss": 0.1104,
38
+ "step": 50
39
+ },
40
+ {
41
+ "epoch": 4.96,
42
+ "learning_rate": 9.994499889997801e-05,
43
+ "loss": 0.0839,
44
+ "step": 60
45
+ },
46
+ {
47
+ "epoch": 5.32,
48
+ "eval_loss": 0.116455078125,
49
+ "eval_runtime": 85.2162,
50
+ "eval_samples_per_second": 38.044,
51
+ "eval_steps_per_second": 0.481,
52
+ "step": 64
53
+ },
54
+ {
55
+ "epoch": 5.8,
56
+ "learning_rate": 9.9934998699974e-05,
57
+ "loss": 0.0716,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 6.64,
62
+ "learning_rate": 9.99239984799696e-05,
63
+ "loss": 0.0665,
64
+ "step": 80
65
+ },
66
+ {
67
+ "epoch": 7.48,
68
+ "learning_rate": 9.99139982799656e-05,
69
+ "loss": 0.057,
70
+ "step": 90
71
+ },
72
+ {
73
+ "epoch": 8.32,
74
+ "learning_rate": 9.990299805996121e-05,
75
+ "loss": 0.0521,
76
+ "step": 100
77
+ },
78
+ {
79
+ "epoch": 9.16,
80
+ "learning_rate": 9.98929978599572e-05,
81
+ "loss": 0.0466,
82
+ "step": 110
83
+ },
84
+ {
85
+ "epoch": 9.96,
86
+ "learning_rate": 9.98829976599532e-05,
87
+ "loss": 0.0417,
88
+ "step": 120
89
+ },
90
+ {
91
+ "epoch": 10.64,
92
+ "eval_loss": 0.12420654296875,
93
+ "eval_runtime": 85.7837,
94
+ "eval_samples_per_second": 37.793,
95
+ "eval_steps_per_second": 0.478,
96
+ "step": 128
97
+ },
98
+ {
99
+ "epoch": 10.8,
100
+ "learning_rate": 9.987199743994881e-05,
101
+ "loss": 0.0388,
102
+ "step": 130
103
+ },
104
+ {
105
+ "epoch": 11.64,
106
+ "learning_rate": 9.986199723994481e-05,
107
+ "loss": 0.0371,
108
+ "step": 140
109
+ },
110
+ {
111
+ "epoch": 12.48,
112
+ "learning_rate": 9.98509970199404e-05,
113
+ "loss": 0.0342,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 13.32,
118
+ "learning_rate": 9.98409968199364e-05,
119
+ "loss": 0.0303,
120
+ "step": 160
121
+ },
122
+ {
123
+ "epoch": 14.16,
124
+ "learning_rate": 9.982999659993201e-05,
125
+ "loss": 0.0287,
126
+ "step": 170
127
+ },
128
+ {
129
+ "epoch": 14.96,
130
+ "learning_rate": 9.981999639992801e-05,
131
+ "loss": 0.0262,
132
+ "step": 180
133
+ },
134
+ {
135
+ "epoch": 15.8,
136
+ "learning_rate": 9.9809996199924e-05,
137
+ "loss": 0.0242,
138
+ "step": 190
139
+ },
140
+ {
141
+ "epoch": 15.96,
142
+ "eval_loss": 0.13671875,
143
+ "eval_runtime": 71.3468,
144
+ "eval_samples_per_second": 45.44,
145
+ "eval_steps_per_second": 0.575,
146
+ "step": 192
147
+ },
148
+ {
149
+ "epoch": 16.64,
150
+ "learning_rate": 9.979899597991961e-05,
151
+ "loss": 0.0239,
152
+ "step": 200
153
+ },
154
+ {
155
+ "epoch": 17.48,
156
+ "learning_rate": 9.978899577991561e-05,
157
+ "loss": 0.0216,
158
+ "step": 210
159
+ },
160
+ {
161
+ "epoch": 18.32,
162
+ "learning_rate": 9.97779955599112e-05,
163
+ "loss": 0.0204,
164
+ "step": 220
165
+ },
166
+ {
167
+ "epoch": 19.16,
168
+ "learning_rate": 9.97679953599072e-05,
169
+ "loss": 0.0194,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 19.96,
174
+ "learning_rate": 9.97579951599032e-05,
175
+ "loss": 0.0167,
176
+ "step": 240
177
+ },
178
+ {
179
+ "epoch": 20.8,
180
+ "learning_rate": 9.974699493989881e-05,
181
+ "loss": 0.0177,
182
+ "step": 250
183
+ },
184
+ {
185
+ "epoch": 21.32,
186
+ "eval_loss": 0.15576171875,
187
+ "eval_runtime": 73.465,
188
+ "eval_samples_per_second": 44.13,
189
+ "eval_steps_per_second": 0.558,
190
+ "step": 256
191
+ },
192
+ {
193
+ "epoch": 21.64,
194
+ "learning_rate": 9.973699473989481e-05,
195
+ "loss": 0.0155,
196
+ "step": 260
197
+ },
198
+ {
199
+ "epoch": 22.48,
200
+ "learning_rate": 9.97259945198904e-05,
201
+ "loss": 0.015,
202
+ "step": 270
203
+ },
204
+ {
205
+ "epoch": 23.32,
206
+ "learning_rate": 9.971599431988641e-05,
207
+ "loss": 0.0148,
208
+ "step": 280
209
+ },
210
+ {
211
+ "epoch": 24.16,
212
+ "learning_rate": 9.9704994099882e-05,
213
+ "loss": 0.0137,
214
+ "step": 290
215
+ },
216
+ {
217
+ "epoch": 24.96,
218
+ "learning_rate": 9.969499389987799e-05,
219
+ "loss": 0.0117,
220
+ "step": 300
221
+ },
222
+ {
223
+ "epoch": 25.8,
224
+ "learning_rate": 9.96839936798736e-05,
225
+ "loss": 0.0118,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 26.64,
230
+ "learning_rate": 9.96739934798696e-05,
231
+ "loss": 0.0111,
232
+ "step": 320
233
+ },
234
+ {
235
+ "epoch": 26.64,
236
+ "eval_loss": 0.1729736328125,
237
+ "eval_runtime": 73.6,
238
+ "eval_samples_per_second": 44.049,
239
+ "eval_steps_per_second": 0.557,
240
+ "step": 320
241
+ },
242
+ {
243
+ "epoch": 27.48,
244
+ "learning_rate": 9.96629932598652e-05,
245
+ "loss": 0.0109,
246
+ "step": 330
247
+ },
248
+ {
249
+ "epoch": 28.32,
250
+ "learning_rate": 9.96529930598612e-05,
251
+ "loss": 0.0102,
252
+ "step": 340
253
+ },
254
+ {
255
+ "epoch": 29.16,
256
+ "learning_rate": 9.96419928398568e-05,
257
+ "loss": 0.0094,
258
+ "step": 350
259
+ },
260
+ {
261
+ "epoch": 29.96,
262
+ "learning_rate": 9.96319926398528e-05,
263
+ "loss": 0.0088,
264
+ "step": 360
265
+ },
266
+ {
267
+ "epoch": 30.8,
268
+ "learning_rate": 9.96219924398488e-05,
269
+ "loss": 0.0084,
270
+ "step": 370
271
+ },
272
+ {
273
+ "epoch": 31.64,
274
+ "learning_rate": 9.96109922198444e-05,
275
+ "loss": 0.0082,
276
+ "step": 380
277
+ },
278
+ {
279
+ "epoch": 31.96,
280
+ "eval_loss": 0.1884765625,
281
+ "eval_runtime": 72.563,
282
+ "eval_samples_per_second": 44.678,
283
+ "eval_steps_per_second": 0.565,
284
+ "step": 384
285
+ },
286
+ {
287
+ "epoch": 32.48,
288
+ "learning_rate": 9.96009920198404e-05,
289
+ "loss": 0.0082,
290
+ "step": 390
291
+ },
292
+ {
293
+ "epoch": 33.32,
294
+ "learning_rate": 9.9589991799836e-05,
295
+ "loss": 0.0078,
296
+ "step": 400
297
+ },
298
+ {
299
+ "epoch": 34.16,
300
+ "learning_rate": 9.9579991599832e-05,
301
+ "loss": 0.0068,
302
+ "step": 410
303
+ },
304
+ {
305
+ "epoch": 34.96,
306
+ "learning_rate": 9.9569991399828e-05,
307
+ "loss": 0.0063,
308
+ "step": 420
309
+ },
310
+ {
311
+ "epoch": 35.8,
312
+ "learning_rate": 9.95589911798236e-05,
313
+ "loss": 0.0061,
314
+ "step": 430
315
+ },
316
+ {
317
+ "epoch": 36.64,
318
+ "learning_rate": 9.95489909798196e-05,
319
+ "loss": 0.0064,
320
+ "step": 440
321
+ },
322
+ {
323
+ "epoch": 37.32,
324
+ "eval_loss": 0.191162109375,
325
+ "eval_runtime": 72.3445,
326
+ "eval_samples_per_second": 44.813,
327
+ "eval_steps_per_second": 0.567,
328
+ "step": 448
329
+ },
330
+ {
331
+ "epoch": 37.48,
332
+ "learning_rate": 9.95379907598152e-05,
333
+ "loss": 0.0058,
334
+ "step": 450
335
+ },
336
+ {
337
+ "epoch": 38.32,
338
+ "learning_rate": 9.95279905598112e-05,
339
+ "loss": 0.0051,
340
+ "step": 460
341
+ },
342
+ {
343
+ "epoch": 39.16,
344
+ "learning_rate": 9.95169903398068e-05,
345
+ "loss": 0.0053,
346
+ "step": 470
347
+ },
348
+ {
349
+ "epoch": 39.96,
350
+ "learning_rate": 9.950699013980281e-05,
351
+ "loss": 0.0049,
352
+ "step": 480
353
+ },
354
+ {
355
+ "epoch": 40.8,
356
+ "learning_rate": 9.94969899397988e-05,
357
+ "loss": 0.0048,
358
+ "step": 490
359
+ },
360
+ {
361
+ "epoch": 41.64,
362
+ "learning_rate": 9.94859897197944e-05,
363
+ "loss": 0.0047,
364
+ "step": 500
365
+ },
366
+ {
367
+ "epoch": 42.48,
368
+ "learning_rate": 9.94759895197904e-05,
369
+ "loss": 0.0047,
370
+ "step": 510
371
+ },
372
+ {
373
+ "epoch": 42.64,
374
+ "eval_loss": 0.195556640625,
375
+ "eval_runtime": 71.2606,
376
+ "eval_samples_per_second": 45.495,
377
+ "eval_steps_per_second": 0.575,
378
+ "step": 512
379
+ },
380
+ {
381
+ "epoch": 43.32,
382
+ "learning_rate": 9.946498929978601e-05,
383
+ "loss": 0.0044,
384
+ "step": 520
385
+ },
386
+ {
387
+ "epoch": 44.16,
388
+ "learning_rate": 9.9454989099782e-05,
389
+ "loss": 0.0044,
390
+ "step": 530
391
+ },
392
+ {
393
+ "epoch": 44.96,
394
+ "learning_rate": 9.9444988899778e-05,
395
+ "loss": 0.0039,
396
+ "step": 540
397
+ },
398
+ {
399
+ "epoch": 45.8,
400
+ "learning_rate": 9.943398867977361e-05,
401
+ "loss": 0.0036,
402
+ "step": 550
403
+ },
404
+ {
405
+ "epoch": 46.64,
406
+ "learning_rate": 9.942398847976961e-05,
407
+ "loss": 0.0037,
408
+ "step": 560
409
+ },
410
+ {
411
+ "epoch": 47.48,
412
+ "learning_rate": 9.94129882597652e-05,
413
+ "loss": 0.0034,
414
+ "step": 570
415
+ },
416
+ {
417
+ "epoch": 47.96,
418
+ "eval_loss": 0.2215576171875,
419
+ "eval_runtime": 71.3132,
420
+ "eval_samples_per_second": 45.461,
421
+ "eval_steps_per_second": 0.575,
422
+ "step": 576
423
+ },
424
+ {
425
+ "epoch": 48.32,
426
+ "learning_rate": 9.94029880597612e-05,
427
+ "loss": 0.0032,
428
+ "step": 580
429
+ },
430
+ {
431
+ "epoch": 49.16,
432
+ "learning_rate": 9.93919878397568e-05,
433
+ "loss": 0.0035,
434
+ "step": 590
435
+ },
436
+ {
437
+ "epoch": 49.96,
438
+ "learning_rate": 9.938198763975281e-05,
439
+ "loss": 0.0032,
440
+ "step": 600
441
+ },
442
+ {
443
+ "epoch": 50.8,
444
+ "learning_rate": 9.93709874197484e-05,
445
+ "loss": 0.003,
446
+ "step": 610
447
+ },
448
+ {
449
+ "epoch": 51.64,
450
+ "learning_rate": 9.93609872197444e-05,
451
+ "loss": 0.0031,
452
+ "step": 620
453
+ },
454
+ {
455
+ "epoch": 52.48,
456
+ "learning_rate": 9.934998699974e-05,
457
+ "loss": 0.0029,
458
+ "step": 630
459
+ },
460
+ {
461
+ "epoch": 53.32,
462
+ "learning_rate": 9.933998679973599e-05,
463
+ "loss": 0.0029,
464
+ "step": 640
465
+ },
466
+ {
467
+ "epoch": 53.32,
468
+ "eval_loss": 0.221923828125,
469
+ "eval_runtime": 71.4852,
470
+ "eval_samples_per_second": 45.352,
471
+ "eval_steps_per_second": 0.574,
472
+ "step": 640
473
+ },
474
+ {
475
+ "epoch": 54.16,
476
+ "learning_rate": 9.93289865797316e-05,
477
+ "loss": 0.0028,
478
+ "step": 650
479
+ },
480
+ {
481
+ "epoch": 54.96,
482
+ "learning_rate": 9.93189863797276e-05,
483
+ "loss": 0.0027,
484
+ "step": 660
485
+ },
486
+ {
487
+ "epoch": 55.8,
488
+ "learning_rate": 9.93089861797236e-05,
489
+ "loss": 0.0026,
490
+ "step": 670
491
+ },
492
+ {
493
+ "epoch": 56.64,
494
+ "learning_rate": 9.929798595971919e-05,
495
+ "loss": 0.0022,
496
+ "step": 680
497
+ },
498
+ {
499
+ "epoch": 57.48,
500
+ "learning_rate": 9.92879857597152e-05,
501
+ "loss": 0.0022,
502
+ "step": 690
503
+ },
504
+ {
505
+ "epoch": 58.32,
506
+ "learning_rate": 9.92769855397108e-05,
507
+ "loss": 0.0022,
508
+ "step": 700
509
+ },
510
+ {
511
+ "epoch": 58.64,
512
+ "eval_loss": 0.2276611328125,
513
+ "eval_runtime": 71.4916,
514
+ "eval_samples_per_second": 45.348,
515
+ "eval_steps_per_second": 0.573,
516
+ "step": 704
517
+ },
518
+ {
519
+ "epoch": 59.16,
520
+ "learning_rate": 9.92669853397068e-05,
521
+ "loss": 0.0025,
522
+ "step": 710
523
+ },
524
+ {
525
+ "epoch": 59.96,
526
+ "learning_rate": 9.925698513970279e-05,
527
+ "loss": 0.0021,
528
+ "step": 720
529
+ },
530
+ {
531
+ "epoch": 60.8,
532
+ "learning_rate": 9.92459849196984e-05,
533
+ "loss": 0.0024,
534
+ "step": 730
535
+ },
536
+ {
537
+ "epoch": 61.64,
538
+ "learning_rate": 9.92359847196944e-05,
539
+ "loss": 0.0022,
540
+ "step": 740
541
+ },
542
+ {
543
+ "epoch": 62.48,
544
+ "learning_rate": 9.922498449968999e-05,
545
+ "loss": 0.0018,
546
+ "step": 750
547
+ },
548
+ {
549
+ "epoch": 63.32,
550
+ "learning_rate": 9.9214984299686e-05,
551
+ "loss": 0.0017,
552
+ "step": 760
553
+ },
554
+ {
555
+ "epoch": 63.96,
556
+ "eval_loss": 0.24072265625,
557
+ "eval_runtime": 72.0268,
558
+ "eval_samples_per_second": 45.011,
559
+ "eval_steps_per_second": 0.569,
560
+ "step": 768
561
+ },
562
+ {
563
+ "epoch": 64.16,
564
+ "learning_rate": 9.92039840796816e-05,
565
+ "loss": 0.0021,
566
+ "step": 770
567
+ },
568
+ {
569
+ "epoch": 64.96,
570
+ "learning_rate": 9.91939838796776e-05,
571
+ "loss": 0.0017,
572
+ "step": 780
573
+ },
574
+ {
575
+ "epoch": 65.8,
576
+ "learning_rate": 9.91839836796736e-05,
577
+ "loss": 0.0022,
578
+ "step": 790
579
+ },
580
+ {
581
+ "epoch": 66.64,
582
+ "learning_rate": 9.91729834596692e-05,
583
+ "loss": 0.0019,
584
+ "step": 800
585
+ },
586
+ {
587
+ "epoch": 67.48,
588
+ "learning_rate": 9.91629832596652e-05,
589
+ "loss": 0.0017,
590
+ "step": 810
591
+ },
592
+ {
593
+ "epoch": 68.32,
594
+ "learning_rate": 9.91519830396608e-05,
595
+ "loss": 0.0017,
596
+ "step": 820
597
+ },
598
+ {
599
+ "epoch": 69.16,
600
+ "learning_rate": 9.91419828396568e-05,
601
+ "loss": 0.0018,
602
+ "step": 830
603
+ },
604
+ {
605
+ "epoch": 69.32,
606
+ "eval_loss": 0.24853515625,
607
+ "eval_runtime": 73.1565,
608
+ "eval_samples_per_second": 44.316,
609
+ "eval_steps_per_second": 0.56,
610
+ "step": 832
611
+ },
612
+ {
613
+ "epoch": 69.96,
614
+ "learning_rate": 9.91319826396528e-05,
615
+ "loss": 0.0018,
616
+ "step": 840
617
+ },
618
+ {
619
+ "epoch": 70.8,
620
+ "learning_rate": 9.91209824196484e-05,
621
+ "loss": 0.0016,
622
+ "step": 850
623
+ },
624
+ {
625
+ "epoch": 71.64,
626
+ "learning_rate": 9.91109822196444e-05,
627
+ "loss": 0.0015,
628
+ "step": 860
629
+ },
630
+ {
631
+ "epoch": 72.48,
632
+ "learning_rate": 9.909998199964e-05,
633
+ "loss": 0.0016,
634
+ "step": 870
635
+ },
636
+ {
637
+ "epoch": 73.32,
638
+ "learning_rate": 9.9089981799636e-05,
639
+ "loss": 0.0016,
640
+ "step": 880
641
+ },
642
+ {
643
+ "epoch": 74.16,
644
+ "learning_rate": 9.90789815796316e-05,
645
+ "loss": 0.0015,
646
+ "step": 890
647
+ },
648
+ {
649
+ "epoch": 74.64,
650
+ "eval_loss": 0.23681640625,
651
+ "eval_runtime": 71.4778,
652
+ "eval_samples_per_second": 45.357,
653
+ "eval_steps_per_second": 0.574,
654
+ "step": 896
655
+ },
656
+ {
657
+ "epoch": 74.96,
658
+ "learning_rate": 9.90689813796276e-05,
659
+ "loss": 0.0016,
660
+ "step": 900
661
+ },
662
+ {
663
+ "epoch": 75.8,
664
+ "learning_rate": 9.905798115962319e-05,
665
+ "loss": 0.0016,
666
+ "step": 910
667
+ },
668
+ {
669
+ "epoch": 76.64,
670
+ "learning_rate": 9.90479809596192e-05,
671
+ "loss": 0.0016,
672
+ "step": 920
673
+ },
674
+ {
675
+ "epoch": 77.48,
676
+ "learning_rate": 9.90369807396148e-05,
677
+ "loss": 0.0014,
678
+ "step": 930
679
+ },
680
+ {
681
+ "epoch": 78.32,
682
+ "learning_rate": 9.90269805396108e-05,
683
+ "loss": 0.0011,
684
+ "step": 940
685
+ },
686
+ {
687
+ "epoch": 79.16,
688
+ "learning_rate": 9.901598031960639e-05,
689
+ "loss": 0.0015,
690
+ "step": 950
691
+ },
692
+ {
693
+ "epoch": 79.96,
694
+ "learning_rate": 9.900598011960239e-05,
695
+ "loss": 0.0012,
696
+ "step": 960
697
+ },
698
+ {
699
+ "epoch": 79.96,
700
+ "eval_loss": 0.254150390625,
701
+ "eval_runtime": 76.7721,
702
+ "eval_samples_per_second": 42.229,
703
+ "eval_steps_per_second": 0.534,
704
+ "step": 960
705
+ },
706
+ {
707
+ "epoch": 80.8,
708
+ "learning_rate": 9.89959799195984e-05,
709
+ "loss": 0.0013,
710
+ "step": 970
711
+ },
712
+ {
713
+ "epoch": 81.64,
714
+ "learning_rate": 9.898497969959399e-05,
715
+ "loss": 0.0014,
716
+ "step": 980
717
+ },
718
+ {
719
+ "epoch": 82.48,
720
+ "learning_rate": 9.897497949958999e-05,
721
+ "loss": 0.0015,
722
+ "step": 990
723
+ },
724
+ {
725
+ "epoch": 83.32,
726
+ "learning_rate": 9.89639792795856e-05,
727
+ "loss": 0.0013,
728
+ "step": 1000
729
+ },
730
+ {
731
+ "epoch": 84.16,
732
+ "learning_rate": 9.89539790795816e-05,
733
+ "loss": 0.0014,
734
+ "step": 1010
735
+ },
736
+ {
737
+ "epoch": 84.96,
738
+ "learning_rate": 9.894397887957759e-05,
739
+ "loss": 0.0012,
740
+ "step": 1020
741
+ },
742
+ {
743
+ "epoch": 85.32,
744
+ "eval_loss": 0.253662109375,
745
+ "eval_runtime": 76.0139,
746
+ "eval_samples_per_second": 42.65,
747
+ "eval_steps_per_second": 0.539,
748
+ "step": 1024
749
+ },
750
+ {
751
+ "epoch": 85.8,
752
+ "learning_rate": 9.893297865957319e-05,
753
+ "loss": 0.0014,
754
+ "step": 1030
755
+ },
756
+ {
757
+ "epoch": 86.64,
758
+ "learning_rate": 9.89229784595692e-05,
759
+ "loss": 0.0011,
760
+ "step": 1040
761
+ },
762
+ {
763
+ "epoch": 87.48,
764
+ "learning_rate": 9.89119782395648e-05,
765
+ "loss": 0.0012,
766
+ "step": 1050
767
+ },
768
+ {
769
+ "epoch": 88.32,
770
+ "learning_rate": 9.890197803956079e-05,
771
+ "loss": 0.0012,
772
+ "step": 1060
773
+ },
774
+ {
775
+ "epoch": 89.16,
776
+ "learning_rate": 9.88909778195564e-05,
777
+ "loss": 0.0013,
778
+ "step": 1070
779
+ },
780
+ {
781
+ "epoch": 89.96,
782
+ "learning_rate": 9.88809776195524e-05,
783
+ "loss": 0.0011,
784
+ "step": 1080
785
+ },
786
+ {
787
+ "epoch": 90.64,
788
+ "eval_loss": 0.268798828125,
789
+ "eval_runtime": 75.8685,
790
+ "eval_samples_per_second": 42.732,
791
+ "eval_steps_per_second": 0.54,
792
+ "step": 1088
793
+ },
794
+ {
795
+ "epoch": 90.8,
796
+ "learning_rate": 9.88709774195484e-05,
797
+ "loss": 0.0011,
798
+ "step": 1090
799
+ },
800
+ {
801
+ "epoch": 91.64,
802
+ "learning_rate": 9.885997719954399e-05,
803
+ "loss": 0.0013,
804
+ "step": 1100
805
+ },
806
+ {
807
+ "epoch": 92.48,
808
+ "learning_rate": 9.884997699954e-05,
809
+ "loss": 0.001,
810
+ "step": 1110
811
+ },
812
+ {
813
+ "epoch": 93.32,
814
+ "learning_rate": 9.88389767795356e-05,
815
+ "loss": 0.0011,
816
+ "step": 1120
817
+ },
818
+ {
819
+ "epoch": 94.16,
820
+ "learning_rate": 9.88289765795316e-05,
821
+ "loss": 0.0013,
822
+ "step": 1130
823
+ },
824
+ {
825
+ "epoch": 94.96,
826
+ "learning_rate": 9.881897637952759e-05,
827
+ "loss": 0.001,
828
+ "step": 1140
829
+ },
830
+ {
831
+ "epoch": 95.8,
832
+ "learning_rate": 9.88079761595232e-05,
833
+ "loss": 0.0016,
834
+ "step": 1150
835
+ },
836
+ {
837
+ "epoch": 95.96,
838
+ "eval_loss": 0.24560546875,
839
+ "eval_runtime": 75.5498,
840
+ "eval_samples_per_second": 42.912,
841
+ "eval_steps_per_second": 0.543,
842
+ "step": 1152
843
+ },
844
+ {
845
+ "epoch": 96.64,
846
+ "learning_rate": 9.87979759595192e-05,
847
+ "loss": 0.0011,
848
+ "step": 1160
849
+ },
850
+ {
851
+ "epoch": 97.48,
852
+ "learning_rate": 9.878697573951479e-05,
853
+ "loss": 0.0011,
854
+ "step": 1170
855
+ },
856
+ {
857
+ "epoch": 98.32,
858
+ "learning_rate": 9.87769755395108e-05,
859
+ "loss": 0.0013,
860
+ "step": 1180
861
+ },
862
+ {
863
+ "epoch": 99.16,
864
+ "learning_rate": 9.87659753195064e-05,
865
+ "loss": 0.0011,
866
+ "step": 1190
867
+ },
868
+ {
869
+ "epoch": 99.96,
870
+ "learning_rate": 9.87559751195024e-05,
871
+ "loss": 0.0011,
872
+ "step": 1200
873
+ },
874
+ {
875
+ "epoch": 100.8,
876
+ "learning_rate": 9.8744974899498e-05,
877
+ "loss": 0.0008,
878
+ "step": 1210
879
+ },
880
+ {
881
+ "epoch": 101.32,
882
+ "eval_loss": 0.278076171875,
883
+ "eval_runtime": 74.8396,
884
+ "eval_samples_per_second": 43.319,
885
+ "eval_steps_per_second": 0.548,
886
+ "step": 1216
887
+ },
888
+ {
889
+ "epoch": 101.64,
890
+ "learning_rate": 9.8734974699494e-05,
891
+ "loss": 0.001,
892
+ "step": 1220
893
+ },
894
+ {
895
+ "epoch": 102.48,
896
+ "learning_rate": 9.872397447948958e-05,
897
+ "loss": 0.0008,
898
+ "step": 1230
899
+ },
900
+ {
901
+ "epoch": 103.32,
902
+ "learning_rate": 9.87139742794856e-05,
903
+ "loss": 0.0009,
904
+ "step": 1240
905
+ },
906
+ {
907
+ "epoch": 104.16,
908
+ "learning_rate": 9.870297405948119e-05,
909
+ "loss": 0.0008,
910
+ "step": 1250
911
+ },
912
+ {
913
+ "epoch": 104.96,
914
+ "learning_rate": 9.869297385947719e-05,
915
+ "loss": 0.0008,
916
+ "step": 1260
917
+ },
918
+ {
919
+ "epoch": 105.8,
920
+ "learning_rate": 9.86829736594732e-05,
921
+ "loss": 0.0011,
922
+ "step": 1270
923
+ },
924
+ {
925
+ "epoch": 106.64,
926
+ "learning_rate": 9.86719734394688e-05,
927
+ "loss": 0.0009,
928
+ "step": 1280
929
+ },
930
+ {
931
+ "epoch": 106.64,
932
+ "eval_loss": 0.2666015625,
933
+ "eval_runtime": 75.7897,
934
+ "eval_samples_per_second": 42.776,
935
+ "eval_steps_per_second": 0.541,
936
+ "step": 1280
937
+ }
938
+ ],
939
+ "max_steps": 100000,
940
+ "num_train_epochs": 8334,
941
+ "total_flos": 6810132464640.0,
942
+ "trial_name": null,
943
+ "trial_params": null
944
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1063828ba2e9ddcd06c922117754b55edeba8f0e5dbe1457111b25089b27d900
3
+ size 4207
zero_to_fp32.py ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
4
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
5
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
6
+ # application.
7
+ #
8
+ # example: python zero_to_fp32.py . pytorch_model.bin
9
+
10
+ import argparse
11
+ import torch
12
+ import glob
13
+ import os
14
+ from collections import OrderedDict
15
+
16
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
17
+ # DeepSpeed data structures it has to be available in the current python environment.
18
+ import deepspeed
19
+ from deepspeed.utils import logger
20
+
21
+ debug = 0
22
+
23
+ # load to cpu
24
+ device = torch.device('cpu')
25
+
26
+
27
+ def get_model_state_file(checkpoint_dir, zero_stage):
28
+ if not os.path.isdir(checkpoint_dir):
29
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
30
+
31
+ # there should be only one file
32
+ if zero_stage == 2:
33
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
34
+ elif zero_stage == 3:
35
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
36
+
37
+ if not os.path.exists(file):
38
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
39
+
40
+ return file
41
+
42
+
43
+ def get_optim_files(checkpoint_dir):
44
+ # XXX: need to test that this simple glob rule works for multi-node setup too
45
+ optim_files = sorted(glob.glob(os.path.join(checkpoint_dir, "*_optim_states.pt")))
46
+
47
+ if len(optim_files) == 0:
48
+ raise FileNotFoundError(
49
+ f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
50
+
51
+ return optim_files
52
+
53
+
54
+ def parse_model_state(file):
55
+ state_dict = torch.load(file, map_location=device)
56
+
57
+ if "buffer_names" not in state_dict:
58
+ raise ValueError(f"{file} is not a model state checkpoint")
59
+ buffer_names = state_dict["buffer_names"]
60
+ if debug:
61
+ print("Found buffers:", buffer_names)
62
+
63
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
64
+ buffers = {
65
+ k: v.float()
66
+ for k,
67
+ v in state_dict["module"].items() if k in buffer_names
68
+ }
69
+ return buffers
70
+
71
+
72
+ def parse_optim_states(files, ds_checkpoint_dir):
73
+
74
+ total_files = len(files)
75
+ state_dicts = []
76
+ for f in files:
77
+ state_dicts.append(torch.load(f, map_location=device))
78
+
79
+ if not "zero_stage" in state_dicts[0]['optimizer_state_dict']:
80
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
81
+ zero_stage = state_dicts[0]['optimizer_state_dict']["zero_stage"]
82
+ world_size = state_dicts[0]['optimizer_state_dict']["partition_count"]
83
+ param_shapes = state_dicts[0]["param_shapes"]
84
+
85
+ if world_size != total_files:
86
+ raise ValueError(
87
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
88
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
89
+ )
90
+
91
+ # the groups are named differently in each stage
92
+ if zero_stage == 2:
93
+ fp32_groups_key = "single_partition_of_fp32_groups"
94
+ elif zero_stage == 3:
95
+ fp32_groups_key = "fp32_flat_groups"
96
+ else:
97
+ raise ValueError(f"unknown zero stage {zero_stage}")
98
+
99
+ # if there is more than one param group, there will be multiple flattened tensors - one
100
+ # flattened tensor per group - for simplicity merge them into a single tensor
101
+ #
102
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
103
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
104
+ fp32_flat_groups = [
105
+ torch.cat(state_dicts[i]['optimizer_state_dict'][fp32_groups_key],
106
+ 0) for i in range(len(state_dicts))
107
+ ]
108
+
109
+ return zero_stage, world_size, param_shapes, fp32_flat_groups
110
+
111
+
112
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
113
+ remainder = unpartitioned_numel % world_size
114
+ padding_numel = (world_size - remainder) if remainder else 0
115
+ partitioned_numel = int(unpartitioned_numel / world_size)
116
+ return partitioned_numel, padding_numel
117
+
118
+
119
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
120
+ """
121
+ Returns fp32 state_dict reconstructed from ds checkpoint
122
+
123
+ Args:
124
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
125
+
126
+ """
127
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
128
+
129
+ optim_files = get_optim_files(ds_checkpoint_dir)
130
+ zero_stage, world_size, param_shapes, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
131
+ print(
132
+ f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
133
+
134
+ model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
135
+ buffers = parse_model_state(model_file)
136
+
137
+ # Reconstruction protocol:
138
+ #
139
+ # - for zero2 we just need to concat the partitions back to back and reconsolidate over one huge
140
+ # flat buffer - no need to deal with padding since if there is any it will be only in the tail
141
+ # of the last partition so there it will be just left out
142
+ #
143
+ # - for zero3 we need to zip the partitions together at boundary of each param, re-consolidating
144
+ # each param, while dealing with padding if any
145
+
146
+ if debug:
147
+ for i in range(world_size):
148
+ print(f"fp32_flat_groups[i].shape={fp32_flat_groups[i].shape}")
149
+
150
+ if zero_stage == 2:
151
+ # XXX: memory usage doubles here (zero2)
152
+ full_single_fp32_vector = torch.cat(fp32_flat_groups, 0)
153
+ avail_numel = full_single_fp32_vector.numel()
154
+ elif zero_stage == 3:
155
+ avail_numel = fp32_flat_groups[0].numel() * world_size
156
+
157
+ if debug:
158
+ wanted_params = len(param_shapes)
159
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
160
+ # not asserting if there is a mismatch due to possible padding
161
+ print(f"Have {avail_numel} numels to process.")
162
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
163
+
164
+ state_dict = OrderedDict()
165
+
166
+ # buffers
167
+ state_dict.update(buffers)
168
+ if debug:
169
+ print(f"added {len(buffers)} buffers")
170
+
171
+ # params
172
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
173
+ # out-of-core computing solution
174
+ offset = 0
175
+ total_numel = 0
176
+ total_params = 0
177
+ for name, shape in param_shapes.items():
178
+
179
+ unpartitioned_numel = shape.numel()
180
+ total_numel += unpartitioned_numel
181
+ total_params += 1
182
+
183
+ if zero_stage == 2:
184
+ if debug:
185
+ print(
186
+ f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
187
+ )
188
+ state_dict[name] = full_single_fp32_vector.narrow(
189
+ 0,
190
+ offset,
191
+ unpartitioned_numel).view(shape)
192
+ offset += unpartitioned_numel
193
+
194
+ elif zero_stage == 3:
195
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
196
+
197
+ if debug:
198
+ print(
199
+ f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
200
+ )
201
+
202
+ # XXX: memory usage doubles here (zero3)
203
+ state_dict[name] = torch.cat(
204
+ tuple(fp32_flat_groups[i].narrow(0,
205
+ offset,
206
+ partitioned_numel)
207
+ for i in range(world_size)),
208
+ 0).view(shape)
209
+ offset += partitioned_numel + partitioned_padding_numel
210
+
211
+ if zero_stage == 3:
212
+ offset *= world_size
213
+
214
+ # Sanity check
215
+ if offset != avail_numel:
216
+ raise ValueError(
217
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
218
+
219
+ print(
220
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
221
+ )
222
+
223
+ return state_dict
224
+
225
+
226
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
227
+ """
228
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
229
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
230
+ via a model hub.
231
+
232
+ Args:
233
+ - ``checkpoint_dir``: path to the desired checkpoint folder
234
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
235
+
236
+ Returns:
237
+ - pytorch ``state_dict``
238
+
239
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
240
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
241
+ the checkpoint.
242
+
243
+ A typical usage might be ::
244
+
245
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
246
+ # do the training and checkpoint saving
247
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
248
+ model = model.cpu() # move to cpu
249
+ model.load_state_dict(state_dict)
250
+ # submit to model hub or save the model to share with others
251
+
252
+ In this example the ``model`` will no longer be useable in the deepspeed context of the same
253
+ application. i.e. you will need to re-initialize the deepspeed engine, since
254
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
255
+
256
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
257
+
258
+ """
259
+ if tag is None:
260
+ latest_path = os.path.join(checkpoint_dir, 'latest')
261
+ if os.path.isfile(latest_path):
262
+ with open(latest_path, 'r') as fd:
263
+ tag = fd.read().strip()
264
+ else:
265
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
266
+
267
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
268
+
269
+ if not os.path.isdir(ds_checkpoint_dir):
270
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
271
+
272
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
273
+
274
+
275
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
276
+ """
277
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
278
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
279
+
280
+ Args:
281
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
282
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
283
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
284
+ """
285
+
286
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
287
+ print(f"Saving fp32 state dict to {output_file}")
288
+ torch.save(state_dict, output_file)
289
+
290
+
291
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
292
+ """
293
+ 1. Put the provided model to cpu
294
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
295
+ 3. Load it into the provided model
296
+
297
+ Args:
298
+ - ``model``: the model object to update
299
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
300
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
301
+
302
+ Returns:
303
+ - ``model`: modified model
304
+
305
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
306
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
307
+ conveniently placed for you in the checkpoint folder.
308
+
309
+ A typical usage might be ::
310
+
311
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
312
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
313
+ # submit to model hub or save the model to share with others
314
+
315
+ Note, that once this was run, the ``model`` will no longer be useable in the deepspeed context
316
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
317
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
318
+
319
+ """
320
+ logger.info(f"Extracting fp32 weights")
321
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
322
+
323
+ logger.info(f"Overwriting model with fp32 weights")
324
+ model = model.cpu()
325
+ model.load_state_dict(state_dict, strict=False)
326
+
327
+ return model
328
+
329
+
330
+ if __name__ == "__main__":
331
+
332
+ parser = argparse.ArgumentParser()
333
+ parser.add_argument(
334
+ "checkpoint_dir",
335
+ type=str,
336
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
337
+ parser.add_argument(
338
+ "output_file",
339
+ type=str,
340
+ help=
341
+ "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
342
+ )
343
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
344
+ args = parser.parse_args()
345
+
346
+ debug = args.debug
347
+
348
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)