drbh
/

drbh HF staff commited on
Commit
413af7f
·
verified ·
1 Parent(s): 9caa559

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +258 -0
README.md ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+
3
+ <a href="https://www.youtube.com/watch?v=jlMAX2Oaht0">
4
+ <img width=560 width=315 alt="Making TGI deployment optimal" src="https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png">
5
+ </a>
6
+
7
+ # Text Generation Inference
8
+
9
+ <a href="https://github.com/huggingface/text-generation-inference">
10
+ <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
11
+ </a>
12
+ <a href="https://huggingface.github.io/text-generation-inference">
13
+ <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
14
+ </a>
15
+
16
+ A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
17
+ to power Hugging Chat, the Inference API and Inference Endpoint.
18
+
19
+ </div>
20
+
21
+ ## Table of contents
22
+
23
+ - [Get Started](#get-started)
24
+ - [API Documentation](#api-documentation)
25
+ - [Using a private or gated model](#using-a-private-or-gated-model)
26
+ - [A note on Shared Memory](#a-note-on-shared-memory-shm)
27
+ - [Distributed Tracing](#distributed-tracing)
28
+ - [Local Install](#local-install)
29
+ - [CUDA Kernels](#cuda-kernels)
30
+ - [Optimized architectures](#optimized-architectures)
31
+ - [Run Mistral](#run-a-model)
32
+ - [Run](#run)
33
+ - [Quantization](#quantization)
34
+ - [Develop](#develop)
35
+ - [Testing](#testing)
36
+
37
+ Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as:
38
+
39
+ - Simple launcher to serve most popular LLMs
40
+ - Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
41
+ - Tensor Parallelism for faster inference on multiple GPUs
42
+ - Token streaming using Server-Sent Events (SSE)
43
+ - Continuous batching of incoming requests for increased total throughput
44
+ - Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
45
+ - Quantization with :
46
+ - [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
47
+ - [GPT-Q](https://arxiv.org/abs/2210.17323)
48
+ - [EETQ](https://github.com/NetEase-FuXi/EETQ)
49
+ - [AWQ](https://github.com/casper-hansen/AutoAWQ)
50
+ - [Safetensors](https://github.com/huggingface/safetensors) weight loading
51
+ - Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
52
+ - Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
53
+ - Stop sequences
54
+ - Log probabilities
55
+ - [Speculation](https://huggingface.co/docs/text-generation-inference/conceptual/speculation) ~2x latency
56
+ - [Guidance/JSON](https://huggingface.co/docs/text-generation-inference/conceptual/guidance). Specify output format to speed up inference and make sure the output is valid according to some specs..
57
+ - Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output
58
+ - Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance
59
+
60
+ ### Hardware support
61
+
62
+ - [Nvidia](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference)
63
+ - [AMD](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference) (-rocm)
64
+ - [Inferentia](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference)
65
+ - [Intel GPU](https://github.com/huggingface/text-generation-inference/pull/1475)
66
+ - [Gaudi](https://github.com/huggingface/tgi-gaudi)
67
+ - [Google TPU](https://huggingface.co/docs/optimum-tpu/howto/serving)
68
+
69
+
70
+ ## Get Started
71
+
72
+ ### Docker
73
+
74
+ For a detailed starting guide, please see the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour). The easiest way of getting started is using the official Docker container:
75
+
76
+ ```shell
77
+ model=HuggingFaceH4/zephyr-7b-beta
78
+ volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
79
+
80
+ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0 --model-id $model
81
+ ```
82
+
83
+ And then you can make requests like
84
+
85
+ ```bash
86
+ curl 127.0.0.1:8080/generate_stream \
87
+ -X POST \
88
+ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
89
+ -H 'Content-Type: application/json'
90
+ ```
91
+
92
+ **Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
93
+
94
+ **Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0-rocm --model-id $model` instead of the command above.
95
+
96
+ To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
97
+ ```
98
+ text-generation-launcher --help
99
+ ```
100
+
101
+ ### API documentation
102
+
103
+ You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
104
+ The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).
105
+
106
+ ### Using a private or gated model
107
+
108
+ You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
109
+ `text-generation-inference`. This allows you to gain access to protected resources.
110
+
111
+ For example, if you want to serve the gated Llama V2 model variants:
112
+
113
+ 1. Go to https://huggingface.co/settings/tokens
114
+ 2. Copy your cli READ token
115
+ 3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`
116
+
117
+ or with Docker:
118
+
119
+ ```shell
120
+ model=meta-llama/Llama-2-7b-chat-hf
121
+ volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
122
+ token=<your cli READ token>
123
+
124
+ docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0 --model-id $model
125
+ ```
126
+
127
+ ### A note on Shared Memory (shm)
128
+
129
+ [`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
130
+ `PyTorch` to do distributed training/inference. `text-generation-inference` make
131
+ use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.
132
+
133
+ In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
134
+ peer-to-peer using NVLink or PCI is not possible.
135
+
136
+ To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.
137
+
138
+ If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
139
+ creating a volume with:
140
+
141
+ ```yaml
142
+ - name: shm
143
+ emptyDir:
144
+ medium: Memory
145
+ sizeLimit: 1Gi
146
+ ```
147
+
148
+ and mounting it to `/dev/shm`.
149
+
150
+ Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
151
+ this will impact performance.
152
+
153
+ ### Distributed Tracing
154
+
155
+ `text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
156
+ by setting the address to an OTLP collector with the `--otlp-endpoint` argument.
157
+
158
+ ### Architecture
159
+
160
+ ![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png)
161
+
162
+ ### Local install
163
+
164
+ You can also opt to install `text-generation-inference` locally.
165
+
166
+ First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
167
+ Python 3.9, e.g. using `conda`:
168
+
169
+ ```shell
170
+ curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
171
+
172
+ conda create -n text-generation-inference python=3.11
173
+ conda activate text-generation-inference
174
+ ```
175
+
176
+ You may also need to install Protoc.
177
+
178
+ On Linux:
179
+
180
+ ```shell
181
+ PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
182
+ curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
183
+ sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
184
+ sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
185
+ rm -f $PROTOC_ZIP
186
+ ```
187
+
188
+ On MacOS, using Homebrew:
189
+
190
+ ```shell
191
+ brew install protobuf
192
+ ```
193
+
194
+ Then run:
195
+
196
+ ```shell
197
+ BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
198
+ text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
199
+ ```
200
+
201
+ **Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
202
+
203
+ ```shell
204
+ sudo apt-get install libssl-dev gcc -y
205
+ ```
206
+
207
+ ## Optimized architectures
208
+
209
+ TGI works out of the box to serve optimized models for all modern models. They can be found in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).
210
+
211
+ Other architectures are supported on a best-effort basis using:
212
+
213
+ `AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`
214
+
215
+ or
216
+
217
+ `AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`
218
+
219
+
220
+
221
+ ## Run locally
222
+
223
+ ### Run
224
+
225
+ ```shell
226
+ text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
227
+ ```
228
+
229
+ ### Quantization
230
+
231
+ You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:
232
+
233
+ ```shell
234
+ text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize
235
+ ```
236
+
237
+ 4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.
238
+
239
+ ## Develop
240
+
241
+ ```shell
242
+ make server-dev
243
+ make router-dev
244
+ ```
245
+
246
+ ## Testing
247
+
248
+ ```shell
249
+ # python
250
+ make python-server-tests
251
+ make python-client-tests
252
+ # or both server and client tests
253
+ make python-tests
254
+ # rust cargo tests
255
+ make rust-tests
256
+ # integration tests
257
+ make integration-tests
258
+ ```