dragonSwing commited on
Commit
d61fa3e
1 Parent(s): e4f1b1a

commit from $USER

Browse files
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: vi
3
+ datasets:
4
+ - vlsp
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ license: apache-2.0
12
+ model-index:
13
+ - name: Wav2vec2 Base Vietnamese
14
+ results:
15
+ - task:
16
+ name: Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice vi
20
+ type: common_voice
21
+ args: vi
22
+ metrics:
23
+ - name: Test WER
24
+ type: wer
25
+ value: 31.76
26
+ ---
27
+ # Wav2Vec2-Large-XLSR-53-Vietnamese
28
+ Fine-tuned [dragonSwing/wav2vec2-base-pretrain-vietnamese](https://huggingface.co/dragonSwing/wav2vec2-base-pretrain-vietnamese) on Vietnamese Speech Recognition task using 100h labelled data from [VSLP dataset](https://drive.google.com/file/d/1vUSxdORDxk-ePUt-bUVDahpoXiqKchMx/view?usp=sharing).
29
+ When using this model, make sure that your speech input is sampled at 16kHz.
30
+ ## Usage
31
+ The model can be used directly (without a language model) as follows:
32
+ ```python
33
+ import torch
34
+ import torchaudio
35
+ from datasets import load_dataset
36
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
37
+ test_dataset = load_dataset("common_voice", "vi", split="test")
38
+ processor = Wav2Vec2Processor.from_pretrained("dragonSwing/wav2vec2-base-vietnamese")
39
+ model = Wav2Vec2ForCTC.from_pretrained("dragonSwing/wav2vec2-base-vietnamese")
40
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
41
+ # Preprocessing the datasets.
42
+ # We need to read the aduio files as arrays
43
+ def speech_file_to_array_fn(batch):
44
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
45
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
46
+ return batch
47
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
48
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
49
+ with torch.no_grad():
50
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
51
+ predicted_ids = torch.argmax(logits, dim=-1)
52
+ print("Prediction:", processor.batch_decode(predicted_ids))
53
+ print("Reference:", test_dataset["sentence"][:2])
54
+ ```
55
+ ## Evaluation
56
+ The model can be evaluated as follows on the Vietnamese test data of Common Voice.
57
+ ```python
58
+ import torch
59
+ import torchaudio
60
+ from datasets import load_dataset, load_metric
61
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
62
+ import re
63
+ test_dataset = load_dataset("common_voice", "vi", split="test")
64
+ wer = load_metric("wer")
65
+ processor = Wav2Vec2Processor.from_pretrained("dragonSwing/wav2vec2-base-vietnamese")
66
+ model = Wav2Vec2ForCTC.from_pretrained("dragonSwing/wav2vec2-base-vietnamese")
67
+ model.to("cuda")
68
+ chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]'
69
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
70
+ # Preprocessing the datasets.
71
+ # We need to read the aduio files as arrays
72
+ def speech_file_to_array_fn(batch):
73
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
74
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
75
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
76
+ return batch
77
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
78
+ # Preprocessing the datasets.
79
+ # We need to read the aduio files as arrays
80
+ def evaluate(batch):
81
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
82
+ with torch.no_grad():
83
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
84
+ pred_ids = torch.argmax(logits, dim=-1)
85
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
86
+ return batch
87
+ result = test_dataset.map(evaluate, batched=True, batch_size=1)
88
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
89
+ ```
90
+ **Test Result**: 31.76%
config.json ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/drive/MyDrive/wav2vec2-base-vn/fosd/checkpoint-96000",
3
+ "activation_dropout": 0.1,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2ForCTC"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "codevector_dim": 256,
11
+ "contrastive_logits_temperature": 0.1,
12
+ "conv_bias": false,
13
+ "conv_dim": [
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512,
19
+ 512,
20
+ 512
21
+ ],
22
+ "conv_kernel": [
23
+ 10,
24
+ 3,
25
+ 3,
26
+ 3,
27
+ 3,
28
+ 2,
29
+ 2
30
+ ],
31
+ "conv_stride": [
32
+ 5,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2,
37
+ 2,
38
+ 2
39
+ ],
40
+ "ctc_loss_reduction": "mean",
41
+ "ctc_zero_infinity": true,
42
+ "diversity_loss_weight": 0.1,
43
+ "do_stable_layer_norm": false,
44
+ "eos_token_id": 2,
45
+ "feat_extract_activation": "gelu",
46
+ "feat_extract_norm": "group",
47
+ "feat_proj_dropout": 0.0,
48
+ "feat_quantizer_dropout": 0.0,
49
+ "final_dropout": 0.1,
50
+ "gradient_checkpointing": true,
51
+ "hidden_act": "gelu",
52
+ "hidden_dropout": 0.1,
53
+ "hidden_size": 768,
54
+ "initializer_range": 0.02,
55
+ "intermediate_size": 3072,
56
+ "layer_norm_eps": 1e-05,
57
+ "layerdrop": 0.1,
58
+ "mask_feature_length": 10,
59
+ "mask_feature_prob": 0.0,
60
+ "mask_time_length": 10,
61
+ "mask_time_prob": 0.05,
62
+ "model_type": "wav2vec2",
63
+ "num_attention_heads": 12,
64
+ "num_codevector_groups": 2,
65
+ "num_codevectors_per_group": 320,
66
+ "num_conv_pos_embedding_groups": 16,
67
+ "num_conv_pos_embeddings": 128,
68
+ "num_feat_extract_layers": 7,
69
+ "num_hidden_layers": 12,
70
+ "num_negatives": 100,
71
+ "pad_token_id": 0,
72
+ "proj_codevector_dim": 256,
73
+ "transformers_version": "4.6.1",
74
+ "vocab_size": 98
75
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ec143e2442a06b362622f1c6238b3af164858f4e7dc4f4c1cda998d402c7e86
3
+ size 377873047
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false, "word_delimiter_token": "|"}
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "j": 5, "ũ": 6, "f": 7, "v": 8, "ỗ": 9, "ạ": 10, "ể": 11, "é": 12, "è": 13, "ọ": 14, "s": 15, "ẻ": 16, "b": 17, "ữ": 18, "w": 19, "g": 20, "ì": 21, "k": 22, "ứ": 23, "ố": 24, "ở": 25, "e": 26, "à": 27, "â": 28, "á": 29, "ẵ": 30, "í": 31, "ử": 32, "ớ": 33, "ằ": 34, "ẩ": 35, "ẽ": 36, "ủ": 37, "ả": 38, "ệ": 39, "i": 40, "ă": 41, "ặ": 42, "d": 43, "ờ": 44, "ề": 45, "ồ": 46, "ừ": 47, "ổ": 48, "o": 49, "h": 50, "ấ": 51, "ẳ": 52, "ỳ": 53, "n": 54, "ụ": 55, "y": 56, "r": 57, "đ": 58, "ẫ": 59, "ỏ": 60, "ẹ": 61, "ễ": 62, "ĩ": 63, "ế": 64, "ỹ": 65, "p": 66, "ị": 67, "ộ": 68, "ã": 69, "ý": 70, "ắ": 71, "z": 72, "ô": 73, "ù": 74, "m": 75, "õ": 76, "c": 77, "t": 78, "ự": 79, "ợ": 80, "u": 81, "ê": 82, "ậ": 83, "ỡ": 84, "ỵ": 85, "ư": 86, "x": 87, "a": 88, "ó": 89, "ỉ": 90, "ỷ": 91, "l": 92, "ầ": 93, "q": 94, "ú": 95, "ò": 96, "ơ": 97}