|
from transformers import PretrainedConfig |
|
|
|
|
|
class Seq2LabelsConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Seq2LabelsModel`]. It is used to |
|
instantiate a Seq2Labels model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the Seq2Labels architecture. |
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 30522): |
|
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`]. |
|
pretrained_name_or_path (`str`, *optional*, defaults to `bert-base-cased`): |
|
Pretrained BERT-like model path |
|
load_pretrained (`bool`, *optional*, defaults to `False`): |
|
Whether to load pretrained model from `pretrained_name_or_path` |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
predictor_dropout (`float`, *optional*): |
|
The dropout ratio for the classification head. |
|
special_tokens_fix (`bool`, *optional*, defaults to `False`): |
|
Whether to add additional tokens to the BERT's embedding layer. |
|
Examples: |
|
```python |
|
>>> from transformers import BertModel, BertConfig |
|
>>> # Initializing a Seq2Labels style configuration |
|
>>> configuration = Seq2LabelsConfig() |
|
>>> # Initializing a model from the bert-base-uncased style configuration |
|
>>> model = Seq2LabelsModel(configuration) |
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "bert" |
|
|
|
def __init__( |
|
self, |
|
pretrained_name_or_path="bert-base-cased", |
|
vocab_size=15, |
|
num_detect_classes=4, |
|
load_pretrained=False, |
|
initializer_range=0.02, |
|
pad_token_id=0, |
|
use_cache=True, |
|
predictor_dropout=0.0, |
|
special_tokens_fix=False, |
|
label_smoothing=0.0, |
|
**kwargs |
|
): |
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.num_detect_classes = num_detect_classes |
|
self.pretrained_name_or_path = pretrained_name_or_path |
|
self.load_pretrained = load_pretrained |
|
self.initializer_range = initializer_range |
|
self.use_cache = use_cache |
|
self.predictor_dropout = predictor_dropout |
|
self.special_tokens_fix = special_tokens_fix |
|
self.label_smoothing = label_smoothing |
|
|