{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b237e8b2ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b237e8b2d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b237e8b2de0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b237e8b2e80>", "_build": "<function ActorCriticPolicy._build at 0x7b237e8b2f20>", "forward": "<function ActorCriticPolicy.forward at 0x7b237e8b2fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b237e8b3060>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b237e8b3100>", "_predict": "<function ActorCriticPolicy._predict at 0x7b237e8b31a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b237e8b3240>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b237e8b32e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b237e8b3380>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b238140f480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1740837670272837064, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAfzz30hLI9mYKuPf2AbL4XywU+m+VRvQAAAAAAAAAAZkTzvT3zPLvK+Dk+zFcoPbC9/LsT3X89AACAPwAAgD8NKL++hClcP0evgL0DEn6+7vlRvs6iAT0AAAAAAAAAAE1FKz2/zz8/4WGPvSWQg77bweO8CY+zPAAAAAAAAAAAAL1WvUMgmz/+4rK9rZyMvoJx072WmI29AAAAAAAAAADNzB49KVhAunp4i7lOBIG0H8HXuQArpTgAAIA/AACAP8Doqz3PU3y83BNDvgMP8b3sCto8WIBaPgAAgD8AAAAAWtYCPlsMiT4nv4I9hpCJvn5Bvj3i0D49AAAAAAAAAACaflg9SM+QulYVHzqmZ4Q1a7fGOtoMNrkAAIA/AACAP9pvE74NiaM/Td4rv/xQd74c6dO9NR1nvgAAAAAAAAAAJqpGvkQKND+Qytw9eol5vpbTm70I93a9AAAAAAAAAAAz5vc84TGcPdaXqDxBUjy+Pv7LPNZkED4AAAAAAAAAANqeqj17NLq4fX2puw9qdjfqaVQ628rVtgAAAAAAAAAA8wyTPaQUMLtVqgM8hAxyPD0WhrxyUVI9AACAPwAAgD8A9Q4+BRfnu846FDy5gIK6U8lOvQ7DW7sAAIA/AACAPzMGCD2z21Q/kjIrvbJbi75LJMc8GZwcvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRgJF9a2WqMAWyUTegDjAF0lEdAm4ItaQmu1XV9lChoBkdAb+PxtHhCMWgHTdQBaAhHQJuWFvP1L8J1fZQoaAZHQG2wC6QNkOJoB004AWgIR0Cblkr0rbxmdX2UKGgGR0BvGJJAdGRWaAdNXwFoCEdAm5eIMOPNmnV9lChoBkdAcrSiblRxcWgHTUgBaAhHQJuX3fMwDeV1fZQoaAZHQHCY2V3Ux21oB02WAWgIR0CbmG25hBqsdX2UKGgGR0BwsIQd0aIfaAdNZQFoCEdAm5h5BkZrHnV9lChoBkdAbahwdbPhQ2gHTUsBaAhHQJuZRWJaaCt1fZQoaAZHQHFoAjMV1wJoB024AWgIR0CbnOwl0HQhdX2UKGgGR0Bstk0vXbudaAdNQQFoCEdAm5z3vMKTjnV9lChoBkdAcFf2AXl8xGgHTRkBaAhHQJueJU2kzoF1fZQoaAZHQHLZBPfsNUhoB00KAmgIR0Cbnqc1wYLtdX2UKGgGR0ByquGBWgezaAdNeAJoCEdAm5+6ciGFjHV9lChoBkdAcXwdCVrylWgHTd4BaAhHQJugfEjxCpp1fZQoaAZHQHH+vP9kz41oB00YAmgIR0CbocQZXMhYdX2UKGgGR0BvZqT8pCrtaAdNNgFoCEdAm6Ir1Iy0r3V9lChoBkdAa8SDBdld1WgHTT8BaAhHQJuitLL6k691fZQoaAZHQG6pADaGpMpoB00gAWgIR0Cbo4wdsBQvdX2UKGgGR0Bwmf779AHFaAdNnAFoCEdAm6OxGQSzxHV9lChoBkdAcXf6fJ3gUGgHTUsBaAhHQJukRF7Uoa11fZQoaAZHQHEbjjWCmMxoB01gAWgIR0CbpTaOPvKEdX2UKGgGR0Btf32GqPwNaAdNtwFoCEdAm6Vj850bLnV9lChoBkdAcGx1s+FDfGgHTWQBaAhHQJuqjqUu+RJ1fZQoaAZHQHHCy2lVLjBoB03lAWgIR0CbqxKF7D2rdX2UKGgGR0BDNf6wdKdyaAdL8mgIR0CbrHYtQKrrdX2UKGgGR0BvinUONHYpaAdN7AFoCEdAm60dXYDkl3V9lChoBkdAb4q5uIhyKmgHTX8BaAhHQJuwg41gpjN1fZQoaAZHQHBlv38GcF1oB025AWgIR0CbsqA9mpVCdX2UKGgGR0Bxd/ww0wajaAdNdwFoCEdAm7QIzN2TxHV9lChoBkdAct6YRujynWgHTTYBaAhHQJu1OmYSg5B1fZQoaAZHQHHcqQ7tAs1oB01uAWgIR0CbtcN/OMVDdX2UKGgGR0BxYOSB9TgmaAdNtAFoCEdAm7agUtZmqnV9lChoBkdAbVgeZG8VYmgHTd0BaAhHQJu3A00m+kB1fZQoaAZHQG4Nw22oegdoB01lAWgIR0Cbt38Empl0dX2UKGgGR0BwoMrMC9ytaAdNqAFoCEdAm7f2MGX5WXV9lChoBkdAcAxUxVQyh2gHTZcBaAhHQJu4ESElE7Z1fZQoaAZHQHKS0Re1KGtoB01UAmgIR0CbuCBciW3SdX2UKGgGR0BwaVv4ubqhaAdNUgFoCEdAm70nVf/m1nV9lChoBkdAcPAHmA9V3mgHTaIBaAhHQJvAd/J/5L11fZQoaAZHQG7F2rn1WbRoB02hAWgIR0Cb2YbpeNT+dX2UKGgGR0BtsaAavRqoaAdNjgFoCEdAm9m24d6syXV9lChoBkdAcMiG6f8Mu2gHTWYBaAhHQJvaaOaOPvN1fZQoaAZHQHGAoybhFVloB01bAWgIR0Cb2sxwyZa3dX2UKGgGR0BunGIGhVU/aAdNnwFoCEdAm9tLxmTTv3V9lChoBkdAcX/OKfnOjmgHTd0BaAhHQJvb1Pacqe91fZQoaAZHQHCWoecQRPJoB02aAmgIR0Cb35MN+b3HdX2UKGgGR0BufSPXCj1xaAdNsQFoCEdAm9/zst03fnV9lChoBkdAZ7xvbXYlIGgHTegDaAhHQJvgM2WIGhV1fZQoaAZHQHLAfPw/gR9oB01+AWgIR0Cb5OteUpuudX2UKGgGR0BxmanGbTc7aAdNOwJoCEdAm+WN4NZvDXV9lChoBkdAcAgfVI7NjmgHTWgCaAhHQJvoJXDFZPl1fZQoaAZHQHGWBQN0/4ZoB00lAWgIR0Cb6aZ7ojfOdX2UKGgGR0Bxfw0BOpKjaAdNeQFoCEdAm+18sg+yJXV9lChoBkdAcZQpmmLtNWgHTX8BaAhHQJvu4z3yqdZ1fZQoaAZHQHGjFqSHM2ZoB013A2gIR0Cb75hDgIhRdX2UKGgGR0BkBa3ocJdCaAdN6ANoCEdAm/Dl/H5rQHV9lChoBkdAcVEdBjWkJ2gHTccBaAhHQJvzEjJMg2Z1fZQoaAZHQG5LIsqaw2VoB03EA2gIR0Cb+suTibUgdX2UKGgGR0BwmpIMBp6AaAdNXQJoCEdAm/86pT/ACXV9lChoBkdAce6YF7laKWgHTUADaAhHQJv/cl9jPOZ1fZQoaAZHQHB2algtvn9oB02rAWgIR0Cb/98nNPgvdX2UKGgGR0BsmsfV7Qb/aAdNkwJoCEdAnAGw4CIUJ3V9lChoBkdAcifJbt7a7GgHTWkBaAhHQJwCDRZ2ZAp1fZQoaAZHQHHWtXT3IuJoB01lAWgIR0CcA8r5IpYtdX2UKGgGR0BvCz6JqIrOaAdNzwFoCEdAnAXJc5bQkXV9lChoBkdAaewRMewLVmgHTbcDaAhHQJwgbBLwnYx1fZQoaAZHQGtZGxD9fkZoB00ZA2gIR0CcIZs4DLbIdX2UKGgGR0BmfUan752yaAdN6ANoCEdAnCRra/RE4XV9lChoBkdAcNjEWZZ0S2gHTYYDaAhHQJwn5C5VfeF1fZQoaAZHQGHzQN9YwItoB03oA2gIR0CcJ/1tfoicdX2UKGgGR0Bw/tet0V8DaAdNTwFoCEdAnClAdfb9InV9lChoBkdAcCMEovzvqmgHTXcBaAhHQJwpfZwn6VN1fZQoaAZHQHGEVcMVk+ZoB00SAmgIR0CcKoM2m52AdX2UKGgGR0Bvh+Lgn+hoaAdN/wFoCEdAnCz70Bfa6HV9lChoBkdAcWFSBK+SKWgHTeYDaAhHQJwucjZ+QU51fZQoaAZHQHGHwZGax5doB020AWgIR0CcLzYGt6omdX2UKGgGR0ByLXgDRtxdaAdNYgFoCEdAnDD/ag261HV9lChoBkdAcerD9fkWAWgHTYQCaAhHQJw0m/bj94x1fZQoaAZHQGhbaH0se4loB03oA2gIR0CcNVT/ACXAdX2UKGgGR0BwmMBZIQOGaAdN3AFoCEdAnDdjHKfWc3V9lChoBkdAcPWuFHrhSGgHTWkBaAhHQJw3oGLUCq91fZQoaAZHQExI5CngpBpoB0viaAhHQJw4RwrDqGF1fZQoaAZHQGX1dlmOEM9oB03oA2gIR0CcOF6ab4JvdX2UKGgGR0Bu3caya/h3aAdNqAFoCEdAnDpU78vVVnV9lChoBkdAcCnvh60IC2gHTaQBaAhHQJw8RRJmNBF1fZQoaAZHQHB50sjFAFBoB03OAWgIR0CcPQckt29tdX2UKGgGR0BwlEdfb9IgaAdNoAFoCEdAnD5pB5X2d3V9lChoBkdAcE9D6WPcSGgHTUEBaAhHQJw+hqgyuZF1fZQoaAZHQHCweuq3mV9oB00HAmgIR0CcPwFfAsTWdX2UKGgGR0BwNG8oQWepaAdNlwJoCEdAnEEy83++/XV9lChoBkdAY6ZHCGetjmgHTegDaAhHQJxBuFRHf/F1fZQoaAZHQGYiALJCBwxoB03oA2gIR0CcQhgk1MufdX2UKGgGR0Bwb+hM8HObaAdNNgFoCEdAnEJfpQk5ZXV9lChoBkdAb9VTzd1uBWgHTWwBaAhHQJxEM+dK/VR1fZQoaAZHQHDgpntfG+9oB01iAWgIR0CcR+9UCJXRdX2UKGgGR0Bsx7aVUuL8aAdNeQFoCEdAnEgXNorWiHV9lChoBkdAcm2f29L6DWgHTUUCaAhHQJxJBGx2SuB1fZQoaAZHQHE4UmUnogVoB02AAWgIR0CcSaYht+CsdX2UKGgGR0Bwk//Pw/gSaAdNNAFoCEdAnEs0G/vfCXV9lChoBkdAcIHX4CZF5WgHTZABaAhHQJxMD2WY4Q11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |