|
{ |
|
"cells": [ |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "af9bff8c", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"from fastai.vision.all import*\n", |
|
"import gradio as gr\n", |
|
"learn1 = load_learner('stage1.pkl')\n", |
|
"learn2 = load_learner('stage2.pkl')\n", |
|
"demo = gr.Blocks()\n", |
|
"\n", |
|
"categories1 = 'discarded clothing', 'food waste', 'plastic bags', 'recyc_no_scrap', 'scrap metal piece', 'wood scraps'\n", |
|
"categories2 = 'HDPE container', 'PET plastic bottle', 'aluminium can', 'cardboard', 'glass', 'paper2D', 'paper3D', 'steel and tin cans'\n", |
|
"categories1_str = \"Stage 1 categories: \"+\", \".join(categories1)\n", |
|
"categories2_str = \"Stage 2 categories: \"+\", \".join(categories2)\n", |
|
"placeholder_=\"Stages 1 and 2 of the Recycling Process\\n\"+categories1_str+\"\\n\"+categories2_str\n", |
|
"\n", |
|
"image1 = gr.inputs.Image(shape=(192,192))\n", |
|
"label1 = gr.outputs.Label()\n", |
|
"examples1 = ['stage1ex1_t.jpeg', 'stage1ex2_t.jpeg','stage1ex3_t.jpeg','stage1ex4_t.jpeg', 'stage1ex5_t.jpeg','stage1ex6_t.jpeg']\n", |
|
"\n", |
|
"\n", |
|
"image2 = gr.inputs.Image(shape=(192,192))\n", |
|
"label2 = gr.outputs.Label()\n", |
|
"examples2 = ['stage2ex1_t.jpeg', 'stage2ex2_t.jpeg','stage2ex3_t.jpeg', 'stage2ex4_t.jpeg','stage2ex5_t.jpeg',\n", |
|
" 'stage2ex6_tt.jpeg','stage2ex7_tt.jpeg','stage2ex8_t.jpeg']\n", |
|
"\n", |
|
"\n", |
|
"def classify_stage1(img):\n", |
|
" pred, idx, probs = learn1.predict(img)\n", |
|
" return dict(zip(categories1, map(float,probs)))\n", |
|
"def classify_stage2(img):\n", |
|
" pred, idx, probs = learn2.predict(img)\n", |
|
" return dict(zip(categories2, map(float,probs)))\n", |
|
"\n", |
|
"\n", |
|
"\n", |
|
"with demo:\n", |
|
" gr.Markdown(placeholder_)\n", |
|
" with gr.Tabs():\n", |
|
" with gr.TabItem(\"Stage 1\"):\n", |
|
" with gr.Row():\n", |
|
" nxt1 = random.choice(examples1)\n", |
|
" stage1_input = gr.Image(nxt1)\n", |
|
" stage1_output = gr.Label()\n", |
|
" \n", |
|
" stage1_button = gr.Button(\"Categorize Stage 1 Item\")\n", |
|
" \n", |
|
" \n", |
|
" \n", |
|
" with gr.TabItem(\"Stage2\"):\n", |
|
" with gr.Row():\n", |
|
" stage2_input = gr.Image(random.choice(examples2))\n", |
|
" stage2_output = gr.Label()\n", |
|
" \n", |
|
" stage2_button = gr.Button(\"Categorize Stage 2 Item\")\n", |
|
"\n", |
|
" stage1_button.click(classify_stage1, inputs=stage1_input, outputs=stage1_output)#, examples = examples1)\n", |
|
" stage2_button.click(classify_stage2, inputs=stage2_input, outputs=stage2_output)#, examples = examples2)\n", |
|
"\n", |
|
"demo.launch()" |
|
] |
|
} |
|
], |
|
"metadata": { |
|
"kernelspec": { |
|
"display_name": "Python 3 (ipykernel)", |
|
"language": "python", |
|
"name": "python3" |
|
}, |
|
"language_info": { |
|
"codemirror_mode": { |
|
"name": "ipython", |
|
"version": 3 |
|
}, |
|
"file_extension": ".py", |
|
"mimetype": "text/x-python", |
|
"name": "python", |
|
"nbconvert_exporter": "python", |
|
"pygments_lexer": "ipython3", |
|
"version": "3.10.4" |
|
}, |
|
"toc": { |
|
"base_numbering": 1, |
|
"nav_menu": {}, |
|
"number_sections": true, |
|
"sideBar": true, |
|
"skip_h1_title": false, |
|
"title_cell": "Table of Contents", |
|
"title_sidebar": "Contents", |
|
"toc_cell": false, |
|
"toc_position": {}, |
|
"toc_section_display": true, |
|
"toc_window_display": false |
|
} |
|
}, |
|
"nbformat": 4, |
|
"nbformat_minor": 5 |
|
} |
|
|