dp15 commited on
Commit
817908c
·
1 Parent(s): 1a5bcb6

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: openrail
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.80 +/- 22.87
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4344604160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f43446041f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4344604280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4344604310>", "_build": "<function ActorCriticPolicy._build at 0x7f43446043a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4344604430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f43446044c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4344604550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f43446045e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4344604670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4344604700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4344604790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f43445f1b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688085376538315351, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA4UDyFo/65YqHLOxtjJDYhoIO6j9MhNQAAgD8AAIA/mq2yPa7ZqbqjBK26Kb+2NwsmJLq7irk5AACAPwAAgD/mYnm9popPP5Av0DyXL7K+qLBTPJ6HPzsAAAAAAAAAAM0rpD1xbX65vBkoupWxg7X9iGE7xNdJOQAAgD8AAIA/AMoRvK79hboyROW6F24stljAgDqmlwM6AACAPwAAgD/zQI29wA2YP1D6m75rRfa+LkHivbStDb0AAAAAAAAAAObvFD0pRDm6vtyBOS48hTQ1vBu7rbOZuAAAgD8AAIA/AIQzPHrqjD/39am7IdysvsqjDb22SNm8AAAAAAAAAACDBIw+QWEhPx6OQT1RUsG+SpknPoZfB70AAAAAAAAAAHMY5j1IT4y6tvujugCWLrTqu+m57cS7OQAAgD8AAIA/zTjbPBRUsLoKEYE5cVmhNEa3PDru1pK4AACAPwAAgD96RbU+R3AfP3pBBT6lJ6m+WhGRPtWIu70AAAAAAAAAAACHnDzsmeO5FsqHOc6ujDSJ6EA7CwqduAAAgD8AAIA/AJoaPI8SFTlCblU5L32bNBzxg7ouU4G4AACAPwAAgD8zJPw8w71ZujaDGDuRXv21h3qeu5LML7oAAIA/AACAPwDDcD0U/Kq6/mnDugaDwLW+rJQ6BT7gOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGILRh2GIsSMAWyUTegDjAF0lEdAkVmHS8an8HV9lChoBkdAZNjdJrcj7mgHTegDaAhHQJFd/OPeYUp1fZQoaAZHQGEJJON5t3xoB03oA2gIR0CRY8zBhx5tdX2UKGgGR0Be98eGO+7EaAdN6ANoCEdAkXDr6LwWnHV9lChoBkdAYK7aakRBeGgHTegDaAhHQJFx+925hBt1fZQoaAZHQGLT6Fdszl9oB03oA2gIR0CRc/AGB4D+dX2UKGgGR0BnuWZVn27GaAdN6ANoCEdAkYr7fHggo3V9lChoBkdAZZM96kZaV2gHTegDaAhHQJGLG7sfJV91fZQoaAZHQGNOsK9f1HxoB03oA2gIR0CRi3jYZl4DdX2UKGgGR0AH170Fr2xqaAdL1WgIR0CRjlxlQMx5dX2UKGgGR0BlJvwy6+WXaAdN6ANoCEdAkZQVvddmhHV9lChoBkdAYWznDBMzuWgHTegDaAhHQJGVqxmkFfR1fZQoaAZHQGFuNCJGe+VoB03oA2gIR0CRnv+FDfFadX2UKGgGR0BhwzeuV5bAaAdN6ANoCEdAkaBx9oexOnV9lChoBkdAZacRlHz6J2gHTegDaAhHQJGjxQJokAx1fZQoaAZHQDQkiQkona5oB0vTaAhHQJGj4/LTx5N1fZQoaAZHQGJexPXTVlRoB03oA2gIR0CRqG2/i5uqdX2UKGgGR0BkDUd5prULaAdN6ANoCEdAkawWrKeTV3V9lChoBkdAU6lqmCROlGgHTegDaAhHQJGsgSpR4yJ1fZQoaAZHQGJd3aBZpztoB03oA2gIR0CRrxDc/MW5dX2UKGgGR0BkObgKnei0aAdN6ANoCEdAkbJNoSL613V9lChoBkdAYVSszVMEimgHTegDaAhHQJG+PVAiV0N1fZQoaAZHQGBRU47zTWpoB03oA2gIR0CRv+40Mw10dX2UKGgGR0BivHKhcqvvaAdN6ANoCEdAkdp8WbgCOnV9lChoBkdAYzRYPoV2zWgHTegDaAhHQJHalwDNhVl1fZQoaAZHQFl2tmcvugJoB03oA2gIR0CR2uqC6H0sdX2UKGgGR0BuffyVfNRnaAdNewNoCEdAkdtNFWn0kHV9lChoBkdAZRdYnOSntWgHTegDaAhHQJHdMN5MURF1fZQoaAZHQEVVW912aDxoB0vLaAhHQJHdh5LRKHx1fZQoaAZHQFxNWj4593NoB03oA2gIR0CR6AEkB0ZFdX2UKGgGR0Bmr/HtF8XvaAdN6ANoCEdAkelrronrp3V9lChoBkdAY8DtEXtSh2gHTegDaAhHQJHsrkyULUl1fZQoaAZHQF+oNZeRgZ1oB03oA2gIR0CR7MwkxASndX2UKGgGR0Bl86cG1QZXaAdN6ANoCEdAkfEzoZAIIHV9lChoBkdAZ92jv/io9GgHTegDaAhHQJH0xf/m1Y11fZQoaAZHQF+tr8BMi8poB03oA2gIR0CR9SKcd5prdX2UKGgGR0A56GG21D0EaAdL8mgIR0CR9TIEr5IpdX2UKGgGR0Bobz/XGwRoaAdN6ANoCEdAkffDzAeq73V9lChoBkdAZGAPjGT9sWgHTegDaAhHQJH7M+fRNRF1fZQoaAZHQEBqSAYpDu1oB0vMaAhHQJILc7/4qPR1fZQoaAZHQGC6CTUy57RoB03oA2gIR0CSDxkl/pdKdX2UKGgGR0BkJcYht+CsaAdN6ANoCEdAkhYKZc9nsnV9lChoBkdAZF9Id2gWamgHTegDaAhHQJIWLMbFS891fZQoaAZHQGPs7eVLSNRoB03oA2gIR0CSFoOeJ53UdX2UKGgGR0BjhEnCwbEQaAdN6ANoCEdAkidPQrtmc3V9lChoBkdAYHZOZb6gumgHTegDaAhHQJIpXExZdOZ1fZQoaAZHQGB9Sq+8Gs5oB03oA2gIR0CSKbeXAuZkdX2UKGgGR0A7fMIu5BkaaAdL6mgIR0CSKh+dsi0OdX2UKGgGR0BPk0gjhUBGaAdLxmgIR0CSKuyLQ5WBdX2UKGgGR0AzMc4HX2/SaAdL3GgIR0CSMjhBZ6lddX2UKGgGR0Bjd1rM1TBJaAdN6ANoCEdAkjX2YrrgO3V9lChoBkdATOKl+EytWGgHS+loCEdAkja81n/T9nV9lChoBkdAY5FK7I1cdGgHTegDaAhHQJI6etCAtnR1fZQoaAZHQGSiQb+98JFoB03oA2gIR0CSOqPmgam5dX2UKGgGR0BhM/s3Q2MsaAdN6ANoCEdAkkCwRTS9d3V9lChoBkdAZL0Oy3Td+GgHTcoDaAhHQJJD3JIUahp1fZQoaAZHQGZfvovBacJoB03oA2gIR0CSROrIo3JgdX2UKGgGR0BgMRzNliBoaAdN6ANoCEdAkkVF98Z1m3V9lChoBkdAYhIJE6T4cmgHTegDaAhHQJJHizru6Vd1fZQoaAZHQGR4VnmJWNpoB03oA2gIR0CSYTy925hCdX2UKGgGR0BgKxx1gYxdaAdN6ANoCEdAkmFe6ErXlXV9lChoBkdAZ8K+UyHmBGgHTegDaAhHQJJhvfbblBB1fZQoaAZHQGXD1WsA/9poB03oA2gIR0CSeE0o0ALidX2UKGgGR0BgZp3PiT+vaAdN6ANoCEdAknjhguyu6nV9lChoBkdAYuu7JW/8EWgHTegDaAhHQJJ64bWEsat1fZQoaAZHQGCeJ2MbWEtoB03oA2gIR0CSgwLRa5f/dX2UKGgGR0Bg3uSZBsyjaAdN6ANoCEdAkoaFLvkRz3V9lChoBkdAYJC8/2TPjWgHTegDaAhHQJKHE2NvOyF1fZQoaAZHQGQXXWWhRIloB03oA2gIR0CSie0yxiXqdX2UKGgGR0BhfT2Jzkp7aAdN6ANoCEdAkooMkhRqGnV9lChoBkdAZJnFqBVdX2gHTegDaAhHQJKOZDfFaSt1fZQoaAZHQF803OObRWtoB03oA2gIR0CSkKWszVMFdX2UKGgGR0BjDVBY3eenaAdN6ANoCEdAkpHSYCyQgnV9lChoBkdAYFVWcz67/WgHTegDaAhHQJKSN/SYw7F1fZQoaAZHQEKh3W4EwFloB0vbaAhHQJKSxTn7pFF1fZQoaAZHQGad8n/kvK5oB03oA2gIR0CSlLwtapxWdX2UKGgGR8APed9Ujs2OaAdL9GgIR0CSllfLs8gZdX2UKGgGR0BlGacwxnFpaAdN6ANoCEdAkrXzQ/oq1HV9lChoBkdAYfnRNyo4uWgHTegDaAhHQJK2Ljin5zp1fZQoaAZHQGP7vP1L8JloB03oA2gIR0CStrzHjp9rdX2UKGgGR0BkLP7SApazaAdN6ANoCEdAkrq7BwdbPnV9lChoBkdAaNi0tyxRmGgHTegDaAhHQJLMNlz2exx1fZQoaAZHQGdPRLkCFK1oB03oA2gIR0CSzXkGzKLbdX2UKGgGR0Bib2LaVUuMaAdN6ANoCEdAktSC5I6KcnV9lChoBkdAY00Fev6j32gHTegDaAhHQJLXdlrdnCh1fZQoaAZHQGftg/LTx5NoB03oA2gIR0CS2rqHXVbzdX2UKGgGR0BiYaRr8BMjaAdN6ANoCEdAkt9RPKuB+XV9lChoBkdAYIR4O+ZgHGgHTegDaAhHQJLh5EiMYMx1fZQoaAZHQGfi9dVvMr5oB03oA2gIR0CS4zW43FUAdX2UKGgGR0BcC0RFqi48aAdN6ANoCEdAkuOnqu8sc3V9lChoBkdAYgdxH5Jsf2gHTegDaAhHQJLkSZkTYd11fZQoaAZHQEiGneizsyBoB0vNaAhHQJLmg4T9KmN1fZQoaAZHQGMRVvVEuxtoB03oA2gIR0CS5tG7SRbKdX2UKGgGR0BgnwN3GGVSaAdN6ANoCEdAkukS2MKkVXV9lChoBkdAUSMDp1RtQGgHS+RoCEdAkvlkVFhG6XV9lChoBkdAZRObG3nZCmgHTegDaAhHQJMFM/D+BH11fZQoaAZHQGMYFYdQwbloB03oA2gIR0CTBVQiRnvldX2UKGgGR0BjGHWYnfEXaAdN6ANoCEdAkwWrnkkrw3V9lChoBkdAZpPwb2lEZ2gHTegDaAhHQJMILn3cpLF1fZQoaAZHQGK6FqJuVHFoB03oA2gIR0CTCIx+8XendWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c225a16b549f8dba19feda4bf2617b4facd438f0f4e6b581069e5022097f7998
3
+ size 146739
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4344604160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f43446041f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4344604280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4344604310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f43446043a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4344604430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f43446044c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4344604550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f43446045e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4344604670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4344604700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4344604790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f43445f1b80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1688085376538315351,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA4UDyFo/65YqHLOxtjJDYhoIO6j9MhNQAAgD8AAIA/mq2yPa7ZqbqjBK26Kb+2NwsmJLq7irk5AACAPwAAgD/mYnm9popPP5Av0DyXL7K+qLBTPJ6HPzsAAAAAAAAAAM0rpD1xbX65vBkoupWxg7X9iGE7xNdJOQAAgD8AAIA/AMoRvK79hboyROW6F24stljAgDqmlwM6AACAPwAAgD/zQI29wA2YP1D6m75rRfa+LkHivbStDb0AAAAAAAAAAObvFD0pRDm6vtyBOS48hTQ1vBu7rbOZuAAAgD8AAIA/AIQzPHrqjD/39am7IdysvsqjDb22SNm8AAAAAAAAAACDBIw+QWEhPx6OQT1RUsG+SpknPoZfB70AAAAAAAAAAHMY5j1IT4y6tvujugCWLrTqu+m57cS7OQAAgD8AAIA/zTjbPBRUsLoKEYE5cVmhNEa3PDru1pK4AACAPwAAgD96RbU+R3AfP3pBBT6lJ6m+WhGRPtWIu70AAAAAAAAAAACHnDzsmeO5FsqHOc6ujDSJ6EA7CwqduAAAgD8AAIA/AJoaPI8SFTlCblU5L32bNBzxg7ouU4G4AACAPwAAgD8zJPw8w71ZujaDGDuRXv21h3qeu5LML7oAAIA/AACAPwDDcD0U/Kq6/mnDugaDwLW+rJQ6BT7gOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGILRh2GIsSMAWyUTegDjAF0lEdAkVmHS8an8HV9lChoBkdAZNjdJrcj7mgHTegDaAhHQJFd/OPeYUp1fZQoaAZHQGEJJON5t3xoB03oA2gIR0CRY8zBhx5tdX2UKGgGR0Be98eGO+7EaAdN6ANoCEdAkXDr6LwWnHV9lChoBkdAYK7aakRBeGgHTegDaAhHQJFx+925hBt1fZQoaAZHQGLT6Fdszl9oB03oA2gIR0CRc/AGB4D+dX2UKGgGR0BnuWZVn27GaAdN6ANoCEdAkYr7fHggo3V9lChoBkdAZZM96kZaV2gHTegDaAhHQJGLG7sfJV91fZQoaAZHQGNOsK9f1HxoB03oA2gIR0CRi3jYZl4DdX2UKGgGR0AH170Fr2xqaAdL1WgIR0CRjlxlQMx5dX2UKGgGR0BlJvwy6+WXaAdN6ANoCEdAkZQVvddmhHV9lChoBkdAYWznDBMzuWgHTegDaAhHQJGVqxmkFfR1fZQoaAZHQGFuNCJGe+VoB03oA2gIR0CRnv+FDfFadX2UKGgGR0BhwzeuV5bAaAdN6ANoCEdAkaBx9oexOnV9lChoBkdAZacRlHz6J2gHTegDaAhHQJGjxQJokAx1fZQoaAZHQDQkiQkona5oB0vTaAhHQJGj4/LTx5N1fZQoaAZHQGJexPXTVlRoB03oA2gIR0CRqG2/i5uqdX2UKGgGR0BkDUd5prULaAdN6ANoCEdAkawWrKeTV3V9lChoBkdAU6lqmCROlGgHTegDaAhHQJGsgSpR4yJ1fZQoaAZHQGJd3aBZpztoB03oA2gIR0CRrxDc/MW5dX2UKGgGR0BkObgKnei0aAdN6ANoCEdAkbJNoSL613V9lChoBkdAYVSszVMEimgHTegDaAhHQJG+PVAiV0N1fZQoaAZHQGBRU47zTWpoB03oA2gIR0CRv+40Mw10dX2UKGgGR0BivHKhcqvvaAdN6ANoCEdAkdp8WbgCOnV9lChoBkdAYzRYPoV2zWgHTegDaAhHQJHalwDNhVl1fZQoaAZHQFl2tmcvugJoB03oA2gIR0CR2uqC6H0sdX2UKGgGR0BuffyVfNRnaAdNewNoCEdAkdtNFWn0kHV9lChoBkdAZRdYnOSntWgHTegDaAhHQJHdMN5MURF1fZQoaAZHQEVVW912aDxoB0vLaAhHQJHdh5LRKHx1fZQoaAZHQFxNWj4593NoB03oA2gIR0CR6AEkB0ZFdX2UKGgGR0Bmr/HtF8XvaAdN6ANoCEdAkelrronrp3V9lChoBkdAY8DtEXtSh2gHTegDaAhHQJHsrkyULUl1fZQoaAZHQF+oNZeRgZ1oB03oA2gIR0CR7MwkxASndX2UKGgGR0Bl86cG1QZXaAdN6ANoCEdAkfEzoZAIIHV9lChoBkdAZ92jv/io9GgHTegDaAhHQJH0xf/m1Y11fZQoaAZHQF+tr8BMi8poB03oA2gIR0CR9SKcd5prdX2UKGgGR0A56GG21D0EaAdL8mgIR0CR9TIEr5IpdX2UKGgGR0Bobz/XGwRoaAdN6ANoCEdAkffDzAeq73V9lChoBkdAZGAPjGT9sWgHTegDaAhHQJH7M+fRNRF1fZQoaAZHQEBqSAYpDu1oB0vMaAhHQJILc7/4qPR1fZQoaAZHQGC6CTUy57RoB03oA2gIR0CSDxkl/pdKdX2UKGgGR0BkJcYht+CsaAdN6ANoCEdAkhYKZc9nsnV9lChoBkdAZF9Id2gWamgHTegDaAhHQJIWLMbFS891fZQoaAZHQGPs7eVLSNRoB03oA2gIR0CSFoOeJ53UdX2UKGgGR0BjhEnCwbEQaAdN6ANoCEdAkidPQrtmc3V9lChoBkdAYHZOZb6gumgHTegDaAhHQJIpXExZdOZ1fZQoaAZHQGB9Sq+8Gs5oB03oA2gIR0CSKbeXAuZkdX2UKGgGR0A7fMIu5BkaaAdL6mgIR0CSKh+dsi0OdX2UKGgGR0BPk0gjhUBGaAdLxmgIR0CSKuyLQ5WBdX2UKGgGR0AzMc4HX2/SaAdL3GgIR0CSMjhBZ6lddX2UKGgGR0Bjd1rM1TBJaAdN6ANoCEdAkjX2YrrgO3V9lChoBkdATOKl+EytWGgHS+loCEdAkja81n/T9nV9lChoBkdAY5FK7I1cdGgHTegDaAhHQJI6etCAtnR1fZQoaAZHQGSiQb+98JFoB03oA2gIR0CSOqPmgam5dX2UKGgGR0BhM/s3Q2MsaAdN6ANoCEdAkkCwRTS9d3V9lChoBkdAZL0Oy3Td+GgHTcoDaAhHQJJD3JIUahp1fZQoaAZHQGZfvovBacJoB03oA2gIR0CSROrIo3JgdX2UKGgGR0BgMRzNliBoaAdN6ANoCEdAkkVF98Z1m3V9lChoBkdAYhIJE6T4cmgHTegDaAhHQJJHizru6Vd1fZQoaAZHQGR4VnmJWNpoB03oA2gIR0CSYTy925hCdX2UKGgGR0BgKxx1gYxdaAdN6ANoCEdAkmFe6ErXlXV9lChoBkdAZ8K+UyHmBGgHTegDaAhHQJJhvfbblBB1fZQoaAZHQGXD1WsA/9poB03oA2gIR0CSeE0o0ALidX2UKGgGR0BgZp3PiT+vaAdN6ANoCEdAknjhguyu6nV9lChoBkdAYuu7JW/8EWgHTegDaAhHQJJ64bWEsat1fZQoaAZHQGCeJ2MbWEtoB03oA2gIR0CSgwLRa5f/dX2UKGgGR0Bg3uSZBsyjaAdN6ANoCEdAkoaFLvkRz3V9lChoBkdAYJC8/2TPjWgHTegDaAhHQJKHE2NvOyF1fZQoaAZHQGQXXWWhRIloB03oA2gIR0CSie0yxiXqdX2UKGgGR0BhfT2Jzkp7aAdN6ANoCEdAkooMkhRqGnV9lChoBkdAZJnFqBVdX2gHTegDaAhHQJKOZDfFaSt1fZQoaAZHQF803OObRWtoB03oA2gIR0CSkKWszVMFdX2UKGgGR0BjDVBY3eenaAdN6ANoCEdAkpHSYCyQgnV9lChoBkdAYFVWcz67/WgHTegDaAhHQJKSN/SYw7F1fZQoaAZHQEKh3W4EwFloB0vbaAhHQJKSxTn7pFF1fZQoaAZHQGad8n/kvK5oB03oA2gIR0CSlLwtapxWdX2UKGgGR8APed9Ujs2OaAdL9GgIR0CSllfLs8gZdX2UKGgGR0BlGacwxnFpaAdN6ANoCEdAkrXzQ/oq1HV9lChoBkdAYfnRNyo4uWgHTegDaAhHQJK2Ljin5zp1fZQoaAZHQGP7vP1L8JloB03oA2gIR0CStrzHjp9rdX2UKGgGR0BkLP7SApazaAdN6ANoCEdAkrq7BwdbPnV9lChoBkdAaNi0tyxRmGgHTegDaAhHQJLMNlz2exx1fZQoaAZHQGdPRLkCFK1oB03oA2gIR0CSzXkGzKLbdX2UKGgGR0Bib2LaVUuMaAdN6ANoCEdAktSC5I6KcnV9lChoBkdAY00Fev6j32gHTegDaAhHQJLXdlrdnCh1fZQoaAZHQGftg/LTx5NoB03oA2gIR0CS2rqHXVbzdX2UKGgGR0BiYaRr8BMjaAdN6ANoCEdAkt9RPKuB+XV9lChoBkdAYIR4O+ZgHGgHTegDaAhHQJLh5EiMYMx1fZQoaAZHQGfi9dVvMr5oB03oA2gIR0CS4zW43FUAdX2UKGgGR0BcC0RFqi48aAdN6ANoCEdAkuOnqu8sc3V9lChoBkdAYgdxH5Jsf2gHTegDaAhHQJLkSZkTYd11fZQoaAZHQEiGneizsyBoB0vNaAhHQJLmg4T9KmN1fZQoaAZHQGMRVvVEuxtoB03oA2gIR0CS5tG7SRbKdX2UKGgGR0BgnwN3GGVSaAdN6ANoCEdAkukS2MKkVXV9lChoBkdAUSMDp1RtQGgHS+RoCEdAkvlkVFhG6XV9lChoBkdAZRObG3nZCmgHTegDaAhHQJMFM/D+BH11fZQoaAZHQGMYFYdQwbloB03oA2gIR0CTBVQiRnvldX2UKGgGR0BjGHWYnfEXaAdN6ANoCEdAkwWrnkkrw3V9lChoBkdAZpPwb2lEZ2gHTegDaAhHQJMILn3cpLF1fZQoaAZHQGK6FqJuVHFoB03oA2gIR0CTCIx+8XendWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1820c2c2b509e694ec07b79a748a86679127ed6d448d07c5b6821d16969302f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe703cee145feaa6749da4e5bd53ef380f5bdcff5c8d2e3ec3dab7e18c6a4fa6
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (176 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.79713598026365, "std_reward": 22.868810152343116, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-30T01:08:35.560517"}