dougtrajano commited on
Commit
9e6bee9
·
1 Parent(s): ce89360

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -1
README.md CHANGED
@@ -1,3 +1,73 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - pt
4
+ license: apache-2.0
5
+ tags:
6
+ - toxicity
7
+ - portuguese
8
+ - hate speech
9
+ - offensive language
10
+ - generated_from_trainer
11
+ metrics:
12
+ - accuracy
13
+ - f1
14
+ - precision
15
+ - recall
16
+ model-index:
17
+ - name: dougtrajano/toxicity-target-type-identification
18
+ results: []
19
  ---
20
+
21
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
22
+ should probably proofread and complete it, then remove this comment. -->
23
+
24
+ # dougtrajano/toxicity-target-type-identification
25
+
26
+ This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the OLID-BR dataset.
27
+ It achieves the following results on the evaluation set:
28
+ - Loss: 0.7001
29
+ - Accuracy: 0.7505
30
+ - F1: 0.7603
31
+ - Precision: 0.7813
32
+ - Recall: 0.7505
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 3.952388499692274e-05
52
+ - train_batch_size: 8
53
+ - eval_batch_size: 8
54
+ - seed: 1993
55
+ - optimizer: Adam with betas=(0.9944095815441554,0.8750000522553327) and epsilon=1.8526084265228802e-07
56
+ - lr_scheduler_type: linear
57
+ - num_epochs: 30
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
62
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
63
+ | No log | 1.0 | 355 | 0.7001 | 0.7505 | 0.7603 | 0.7813 | 0.7505 |
64
+ | 0.7919 | 2.0 | 710 | 1.0953 | 0.7505 | 0.7452 | 0.7590 | 0.7505 |
65
+ | 0.5218 | 3.0 | 1065 | 1.4217 | 0.7484 | 0.7551 | 0.7688 | 0.7484 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.26.0
71
+ - Pytorch 1.10.2+cu113
72
+ - Datasets 2.9.0
73
+ - Tokenizers 0.13.2