lung-cancer-detection / preprocess.py
dorsar's picture
Upload 775 files
03a8782 verified
raw
history blame
1.39 kB
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import os
import copy
# define data transformations
transform = transforms.Compose([
transforms.Resize((250, 250)), # resize images to 250x250 pixels
transforms.ToTensor(), # convert images to pytorch tensors
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # normalize images with mean and std deviation of imagenet dataset
])
# specify the directory containing the dataset
data_dir = 'Processed_Data'
# load the datasets with the specified transformations
train_dataset = datasets.ImageFolder(os.path.join(data_dir, 'train'), transform=transform) # load training dataset with transformations
valid_dataset = datasets.ImageFolder(os.path.join(data_dir, 'valid'), transform=transform) # load validation dataset with transformations
test_dataset = datasets.ImageFolder(os.path.join(data_dir, 'test'), transform=transform) # load test dataset with transformations
# set batch size for the dataloaders
batch_size = 32 # number of images to be processed in one iteration
# print dataset sizes for confirmation
print(f"Number of training images: {len(train_dataset)}") # 600
print(f"Number of validation images: {len(valid_dataset)}") # 72
print(f"Number of test images: {len(test_dataset)}") # 315