dongxiaoqun
commited on
Commit
•
a1f0b25
1
Parent(s):
22a254a
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: zh
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
inference: False
|
6 |
+
---
|
7 |
+
|
8 |
+
|
9 |
+
Randeng_Pegasus_523M_Summary model (Chinese),which codes has merged into [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
|
10 |
+
|
11 |
+
The 523M million parameter randeng_pegasus_large model, training with sampled gap sentence ratios on 180G Chinese data, and stochastically sample important sentences. The pretraining task just same as the paper [PEGASUS: Pre-training with Extracted Gap-sentences for
|
12 |
+
Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf) mentioned.
|
13 |
+
|
14 |
+
Different from the English version of pegasus, considering that the Chinese sentence piece is unstable, we use jieba and Bertokenizer as the tokenizer in chinese pegasus model.
|
15 |
+
|
16 |
+
This model we provided in hugging face hub is only the pretrained model, has not finetuned with download data yet.
|
17 |
+
|
18 |
+
We also pretained a base model, available with [Randeng_Pegasus_238M_Summary](https://huggingface.co/IDEA-CCNL/Randeng_Pegasus_238M_Summary)
|
19 |
+
|
20 |
+
|
21 |
+
Task: Summarization
|
22 |
+
|
23 |
+
## Usage
|
24 |
+
```python
|
25 |
+
from transformers import PegasusForConditionalGeneration
|
26 |
+
import jieba
|
27 |
+
jieba.initialize()
|
28 |
+
# Need to download tokenizers_pegasus.py and other Python script from Fengshenbang-LM github repo in advance,
|
29 |
+
# or you can mv download in tokenizers_pegasus.py and data_utils.py in https://huggingface.co/IDEA-CCNL/Randeng_Pegasus_523M_Summary/tree/main
|
30 |
+
# Strongly recommend you git clone the Fengshenbang-LM repo:
|
31 |
+
# 1. git clone https://github.com/IDEA-CCNL/Fengshenbang-LM
|
32 |
+
# 2. cd Fengshenbang-LM/fengshen/examples/pegasus/
|
33 |
+
# and then you will see the tokenizers_pegasus.py and data_utils.py which are needed by pegasus model
|
34 |
+
# from tokenizers_pegasus import PegasusTokenizer
|
35 |
+
class PegasusTokenizer(BertTokenizer):
|
36 |
+
model_input_names = ["input_ids", "attention_mask"]
|
37 |
+
def __init__(self, pre_tokenizer=lambda x: jieba.cut(x, HMM=False), **kwargs):
|
38 |
+
self.pre_tokenizer = pre_tokenizer
|
39 |
+
super().__init__(pre_tokenizer=self.pre_tokenizer, **kwargs)
|
40 |
+
self.add_special_tokens({'additional_special_tokens':["<mask_1>"]})
|
41 |
+
|
42 |
+
def build_inputs_with_special_tokens(
|
43 |
+
self,
|
44 |
+
token_ids_0: List[int],
|
45 |
+
token_ids_1: Optional[List[int]] = None) -> List[int]:
|
46 |
+
|
47 |
+
if token_ids_1 is None:
|
48 |
+
return token_ids_0 + [self.eos_token_id]
|
49 |
+
return token_ids_0 + token_ids_1 + [self.eos_token_id]
|
50 |
+
|
51 |
+
def _special_token_mask(self, seq):
|
52 |
+
all_special_ids = set(
|
53 |
+
self.all_special_ids) # call it once instead of inside list comp
|
54 |
+
# all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
|
55 |
+
return [1 if x in all_special_ids else 0 for x in seq]
|
56 |
+
|
57 |
+
def get_special_tokens_mask(
|
58 |
+
self,
|
59 |
+
token_ids_0: List[int],
|
60 |
+
token_ids_1: Optional[List[int]] = None,
|
61 |
+
already_has_special_tokens: bool = False) -> List[int]:
|
62 |
+
if already_has_special_tokens:
|
63 |
+
return self._special_token_mask(token_ids_0)
|
64 |
+
elif token_ids_1 is None:
|
65 |
+
return self._special_token_mask(token_ids_0) + [self.eos_token_id]
|
66 |
+
else:
|
67 |
+
return self._special_token_mask(token_ids_0 +
|
68 |
+
token_ids_1) + [self.eos_token_id]
|
69 |
+
|
70 |
+
model = PegasusForConditionalGeneration.from_pretrained("IDEA-CCNL/randeng_pegasus_523M_summary")
|
71 |
+
tokenizer = PegasusTokenizer.from_pretrained("path/to/vocab.txt")
|
72 |
+
|
73 |
+
text = "在北京冬奥会自由式滑雪女子坡面障碍技巧决赛中,中国选手谷爱凌夺得银牌。祝贺谷爱凌!今天上午,自由式滑雪女子坡面障碍技巧决赛举行。决赛分三轮进行,取选手最佳成绩排名决出奖牌。第一跳,中国选手谷爱凌获得69.90分。在12位选手中排名第三。完成动作后,谷爱凌又扮了个鬼脸,甚是可爱。第二轮中,谷爱凌在道具区第三个障碍处失误,落地时摔倒。获得16.98分。网友:摔倒了也没关系,继续加油!在第二跳失误摔倒的情况下,谷爱凌顶住压力,第三跳稳稳发挥,流畅落地!获得86.23分!此轮比赛,共12位选手参赛,谷爱凌第10位出场。网友:看比赛时我比谷爱凌紧张,加油!"
|
74 |
+
inputs = tokenizer(text, max_length=1024, return_tensors="pt")
|
75 |
+
|
76 |
+
# Generate Summary
|
77 |
+
summary_ids = model.generate(inputs["input_ids"])
|
78 |
+
tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
79 |
+
```
|
80 |
+
|
81 |
+
## Citation
|
82 |
+
If you find the resource is useful, please cite the following website in your paper.
|
83 |
+
```
|
84 |
+
@misc{Fengshenbang-LM,
|
85 |
+
title={Fengshenbang-LM},
|
86 |
+
author={IDEA-CCNL},
|
87 |
+
year={2022},
|
88 |
+
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
|
89 |
+
}
|
90 |
+
```
|