librarian-bot commited on
Commit
2c42120
1 Parent(s): 06a9ddc

Librarian Bot: Add base_model information to model

Browse files

This pull request aims to enrich the metadata of your model by adding [`xlm-roberta-base`](https://huggingface.co/xlm-roberta-base) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.

How did we find this information? We extracted this infromation from the `adapter_config.json` file of your model.

**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.

For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).

This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien).

If you want to automatically add `base_model` metadata to more of your modes you can use the [Librarian Bot](https://huggingface.co/librarian-bot) [Metadata Request Service](https://huggingface.co/spaces/librarian-bots/metadata_request_service)!

Files changed (1) hide show
  1. README.md +19 -18
README.md CHANGED
@@ -27,28 +27,29 @@ tags:
27
  - LoRA
28
  - language-detection
29
  - xlm-roberta-base
 
 
30
  metrics:
31
  - accuracy
32
  - f1
33
- datasets:
34
- - papluca/language-identification
35
- model-index:
36
- - name: xlm-roberta-base-lora-language-detection
37
- results:
38
- - task:
39
- type: text-classification
40
- name: Text Classification
41
- dataset:
42
- type: papluca/language-identification
43
- name: papluca/language-identification
44
- metrics:
45
- - type: accuracy
46
- value: 99.43
47
- name: Accuracy
48
- - type: f1
49
- value: 99.43
50
- name: F1 Score
51
  inference: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  ---
53
 
54
  # xlm-roberta-base-lora-language-detection
 
27
  - LoRA
28
  - language-detection
29
  - xlm-roberta-base
30
+ datasets:
31
+ - papluca/language-identification
32
  metrics:
33
  - accuracy
34
  - f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  inference: false
36
+ base_model: xlm-roberta-base
37
+ model-index:
38
+ - name: xlm-roberta-base-lora-language-detection
39
+ results:
40
+ - task:
41
+ type: text-classification
42
+ name: Text Classification
43
+ dataset:
44
+ name: papluca/language-identification
45
+ type: papluca/language-identification
46
+ metrics:
47
+ - type: accuracy
48
+ value: 99.43
49
+ name: Accuracy
50
+ - type: f1
51
+ value: 99.43
52
+ name: F1 Score
53
  ---
54
 
55
  # xlm-roberta-base-lora-language-detection