ppo-LunarLander-v2 / config.json
domimagi's picture
Retrained agent with different parameters
6cb966b verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c5ceda7cd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c5ceda7cdc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c5ceda7ce50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c5ceda7cee0>", "_build": "<function ActorCriticPolicy._build at 0x7c5ceda7cf70>", "forward": "<function ActorCriticPolicy.forward at 0x7c5ceda7d000>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c5ceda7d090>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c5ceda7d120>", "_predict": "<function ActorCriticPolicy._predict at 0x7c5ceda7d1b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c5ceda7d240>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c5ceda7d2d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c5ceda7d360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c5c90249f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735823818812953353, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOvLj3kf5Q/BKaAPc/SFr+lHdw91r4lvQAAAAAAAAAAwJQcPlOrPD8Gjk09xyL3vhEsUj7rYty9AAAAAAAAAABmRJ68WGywP1Ph8b6HGrS+y1BdPEKMLD0AAAAAAAAAADOi7TxCgAM/JtcMvmVk277Buci8al9WvQAAAAAAAAAAIENpvvHnJj/OpR8+B8DCvueyor6DOCg+AAAAAAAAAADNi6Y8tjRjvFhQzrukNJc8KfrGPVoZdb0AAIA/AACAP7ORUj2peAC8He6AvF1hRTyQ0FU9FHAovQAAgD8AAIA/mhOSPFy/E7pRYQA39io/MnyIGzuiRxi2AACAPwAAgD/zxYS9wKhVP5CUp7wb7/6+hLkMvV6WOroAAAAAAAAAAMAO4r2aTqU+M6HOPiJYs75L/Ps9WZFMPQAAAAAAAAAA5uVqvamgbrzfsI49blI3PaUpXz3dtXm7AACAPwAAgD+zsDM9rtG3uj+4kjdR34Yycw33uTBgp7YAAIA/AACAP82s5ztB7IQ9a9gtvTLkSL4lXde7Q7BjvQAAAAAAAAAAjbarvcM8Wzs8WTa8ihs7vmalSL3UikY/AACAPwAAAACa4T+86edKvMdsjD3Xp0K+MhdYPIirlj4AAIA/AACAPwCYzLvqeqg/bu9uvXF3Fr9Xzvi7gpKMvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE4ALDQ7cO+MAWyUS5GMAXSUR0CrqsuEug6EdX2UKGgGR0BwmqJ79hqkaAdL2mgIR0Crqsq0dBBzdX2UKGgGR0BxWGs5n13/aAdL7GgIR0Crq2xdIGyHdX2UKGgGR0BuMHl4keIVaAdL5GgIR0Crq3QC0WuYdX2UKGgGR0By2SIj4YaYaAdL7mgIR0Crq3Ha37UHdX2UKGgGR0Bwk2hakhzOaAdNCgFoCEdAq6t6aVlf7nV9lChoBkdAcLZ9/BnBcmgHTQ8BaAhHQKurgNyYG+t1fZQoaAZHQHJ2TB/I8yNoB00SAWgIR0Crq6qNyYG/dX2UKGgGR0BzDgBo24usaAdNHwFoCEdAq6v8EX+ERXV9lChoBkdAS7es5n13+2gHS6FoCEdAq6y464lQdnV9lChoBkdAcMPwob4rSWgHTR0BaAhHQKus3HskY411fZQoaAZHQGcKpWFN+LFoB03oA2gIR0CrrPi1RceKdX2UKGgGR0ByDAvboKUnaAdL72gIR0CrrVKQq7ROdX2UKGgGR0Bwfh61LJ0XaAdL7WgIR0CrrXFsP8Q7dX2UKGgGR0By5+Lm6oVEaAdL/2gIR0Crre5Fw1iwdX2UKGgGR0ByUEJTl1bJaAdNDwFoCEdAq64GW4Vh1HV9lChoBkdAcqM5Sm65G2gHTRIBaAhHQKuuOSoOx0N1fZQoaAZHQHHhyA6Mir1oB00XAWgIR0CrrjeUpuuSdX2UKGgGR0BxoaB3A2ycaAdL52gIR0CrrkroGIKudX2UKGgGR0Bur+s90RvnaAdL52gIR0CrrlW/zreJdX2UKGgGR0Bz4YuTRplCaAdL82gIR0Crrmnk1dgOdX2UKGgGR0BwT3FWGRFJaAdL9GgIR0CrrnRTCLuQdX2UKGgGR0By71KkEcKgaAdL+2gIR0Crrn2ycCo1dX2UKGgGR0Bxt1DE3sHCaAdNCQFoCEdAq67UY0l7dHV9lChoBkdASGaV4X40uWgHS4ZoCEdAq67ldxAB1nV9lChoBkdAc+fowEhaDGgHTRABaAhHQKuvOVD8cdZ1fZQoaAZHQG6kjBdld1NoB0vkaAhHQKuvmUu+RHR1fZQoaAZHQHBrnK8tf5VoB0v5aAhHQKuvvCeEqUh1fZQoaAZHQELPeCTUy59oB0uraAhHQKuv4K4QSSN1fZQoaAZHQHIkpX2dupFoB0v2aAhHQKuv5TCtRvZ1fZQoaAZHQEUBfP5YYBNoB0uYaAhHQKuwNlWfbsZ1fZQoaAZHQHAnuiWVu79oB0vTaAhHQKuxRVjqfOF1fZQoaAZHQHBac8cMmWtoB0vraAhHQKuxU8oQWep1fZQoaAZHQG4oDO9nK4hoB00vAWgIR0CrsXyxqwhXdX2UKGgGR0BwX3IV/MGHaAdL82gIR0CrsctdiUgTdX2UKGgGR0ByeRoRIz3zaAdNEwFoCEdAq7IL+o99t3V9lChoBkdAcQJ4u9OARWgHTQkBaAhHQKuyDaPjn3d1fZQoaAZHQHFGkSyt3fRoB00QAWgIR0Crshj2JzkqdX2UKGgGR0ByZqdZq20BaAdNJQFoCEdAq7IYDJU5uXV9lChoBkdAcxeQZGax5mgHS+NoCEdAq7JHxnWat3V9lChoBkdAcJKw8nuy/2gHS+loCEdAq7LQXQ+lj3V9lChoBkdAcA0OJcgQpWgHTRkBaAhHQKuzAZCOWB11fZQoaAZHQHJN8SGrS3NoB0vcaAhHQKuzGTFl05l1fZQoaAZHQHAIeTibUgBoB0vcaAhHQKuzgR7qptJ1fZQoaAZHQHJGqxxDLKVoB0vuaAhHQKuzlbTMJQd1fZQoaAZHQHLFIjGDL8toB0vraAhHQKuzxtoi9qV1fZQoaAZHQHM8P/R3NcJoB00BAWgIR0CrtJRGtp22dX2UKGgGR0BEJG16Vt4zaAdLoGgIR0CrtJ4AsCkodX2UKGgGR0ByJpw5vLowaAdL52gIR0CrtewZn+Q2dX2UKGgGR0BxOBEBsANoaAdL6WgIR0Crtf3IMjNZdX2UKGgGR0BydIzoEB8yaAdNGQFoCEdAq7YGf/WDpXV9lChoBkdAcXt5YYBNmGgHS/1oCEdAq7YI7xNIsnV9lChoBkdAcamuJk5IYmgHS+1oCEdAq7YO49X9znV9lChoBkdAcWYB5ooNNWgHTRMBaAhHQKu2GFAVwgl1fZQoaAZHQHIY5P/JeVtoB00jAWgIR0Crti2+XZ5BdX2UKGgGR0Bydykfs/puaAdNBAFoCEdAq7Z7Uoa1kXV9lChoBkdAcX8iUgSvkmgHS9poCEdAq7aLCYTkAHV9lChoBkdAcTYt/WlMy2gHS8poCEdAq7avpnpSrHV9lChoBkdAcPOFeOXE62gHS+xoCEdAq7bMahpQDXV9lChoBkdAckzYR/ViF2gHTQQBaAhHQKu24NCJGfB1fZQoaAZHQHCQ3/5tWMloB0vQaAhHQKu27OfNA1N1fZQoaAZHQHDVIj4YaYNoB0vdaAhHQKu28p6QeV91fZQoaAZHQG/gBnJ1aGJoB0vZaAhHQKu3g189fTl1fZQoaAZHQFaJS0Sh8IBoB0uKaAhHQKu3jAeq7yx1fZQoaAZHQHPWxKHwgDBoB0v8aAhHQKu37FaSs8x1fZQoaAZHQHAeoAsCkoFoB0vYaAhHQKu4hvP1L8J1fZQoaAZHQHGfrNr0rbxoB0vtaAhHQKu4q36Q/5d1fZQoaAZHQHIsjXe3x4JoB0vuaAhHQKu4xWwNb1R1fZQoaAZHQHAnIu9OARVoB0v0aAhHQKu40UZeiSJ1fZQoaAZHQHGnVea8YhtoB0u4aAhHQKu5GxJul411fZQoaAZHQHLkLa7EpAloB00KAWgIR0CruSKcVgx8dX2UKGgGR0ByVuNkvsZ6aAdL02gIR0CruX2lEZzgdX2UKGgGR0Btz5k7OmiyaAdNBAFoCEdAq7mnRoh6jXV9lChoBkdAcv3YzBRAKWgHTQ0BaAhHQKu5s6bONYN1fZQoaAZHQG4Jg80UGmloB00CAWgIR0CructRvWH2dX2UKGgGR0ByZI2eg+QmaAdL/WgIR0Crudr61stTdX2UKGgGR0BwN79kz41xaAdNAAFoCEdAq7n55JK8MHV9lChoBkdAcRcbVjI7vGgHS+hoCEdAq7plzjm0V3V9lChoBkdAcuDO3lS0jWgHTXgBaAhHQKu6oYk3S8d1fZQoaAZHQHGNLSRbKRxoB00AAWgIR0CruriDEm6YdX2UKGgGR0BtM/NorWiDaAdL+GgIR0CruwEkjX4CdX2UKGgGR0BtYck6cRUWaAdL3GgIR0Cru2cK5TZQdX2UKGgGR0Bx/bzkIX0oaAdL5GgIR0Cru2dxyXD4dX2UKGgGR0ByPHbmEGqxaAdL22gIR0Cru291+y7gdX2UKGgGR0ByT+LP2PDHaAdNAAFoCEdAq7uhMcp9Z3V9lChoBkdAbpW0hNdqtmgHS9hoCEdAq7wEsFt8/nV9lChoBkdAc2nFpwjt5WgHS85oCEdAq7wLYXfqHHV9lChoBkdAcbEf+S8rZ2gHS/ZoCEdAq7wSQNkOJHV9lChoBkdAchH/ViF0xWgHS9doCEdAq7w0W9DhL3V9lChoBkdAc3sGZeAuqWgHS89oCEdAq7xesDGLk3V9lChoBkdAcKN/336AOWgHTRwBaAhHQKu8ehL5AQh1fZQoaAZHQGyk+l9BrvdoB0vmaAhHQKu8grI5o5B1fZQoaAZHQHFEgqmTC+FoB0v+aAhHQKu8tMr3Cbd1fZQoaAZHQHDe6oVEd/9oB0v4aAhHQKu9PM0P6Kt1fZQoaAZHQEU5EvTPSlZoB0u8aAhHQKu9oTcIqsl1fZQoaAZHQHEmOjdpItloB00IAWgIR0CrvbiGnGbTdX2UKGgGR0Bvq5WRzRx+aAdNBAFoCEdAq73DnzQNTnV9lChoBkdAc1cfeDWbw2gHS+toCEdAq73HIKc/dXV9lChoBkdAcCWiBoVVP2gHS/ZoCEdAq75XllsguHV9lChoBkdAcXWneBQN1GgHS+hoCEdAq75oJb+tKnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}