domenicrosati commited on
Commit
1b13d84
1 Parent(s): f62997a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - paraphrasing
4
+ - generated_from_trainer
5
+ datasets:
6
+ - paws
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: pegasus-xsum-finetuned-paws
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: paws
17
+ type: paws
18
+ args: labeled_final
19
+ metrics:
20
+ - name: Rouge1
21
+ type: rouge
22
+ value: 92.4371
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # pegasus-xsum-finetuned-paws
29
+
30
+ This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the paws dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 2.1199
33
+ - Rouge1: 92.4371
34
+ - Rouge2: 75.4061
35
+ - Rougel: 84.1519
36
+ - Rougelsum: 84.1958
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0001
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 5
62
+ - mixed_precision_training: Native AMP
63
+ - label_smoothing_factor: 0.1
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
68
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
69
+ | 2.1481 | 1.46 | 1000 | 2.0112 | 93.7727 | 73.3021 | 84.2963 | 84.2506 |
70
+ | 2.0113 | 2.93 | 2000 | 2.0579 | 93.813 | 73.4119 | 84.3674 | 84.2693 |
71
+ | 2.054 | 4.39 | 3000 | 2.0890 | 93.3926 | 73.3727 | 84.2814 | 84.1649 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.18.0
77
+ - Pytorch 1.11.0
78
+ - Datasets 2.1.0
79
+ - Tokenizers 0.12.1