domenicrosati
commited on
Commit
·
1b13d84
1
Parent(s):
f62997a
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- paraphrasing
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- paws
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
model-index:
|
10 |
+
- name: pegasus-xsum-finetuned-paws
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Sequence-to-sequence Language Modeling
|
14 |
+
type: text2text-generation
|
15 |
+
dataset:
|
16 |
+
name: paws
|
17 |
+
type: paws
|
18 |
+
args: labeled_final
|
19 |
+
metrics:
|
20 |
+
- name: Rouge1
|
21 |
+
type: rouge
|
22 |
+
value: 92.4371
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# pegasus-xsum-finetuned-paws
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the paws dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 2.1199
|
33 |
+
- Rouge1: 92.4371
|
34 |
+
- Rouge2: 75.4061
|
35 |
+
- Rougel: 84.1519
|
36 |
+
- Rougelsum: 84.1958
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0001
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 16
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 5
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
- label_smoothing_factor: 0.1
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
|
69 |
+
| 2.1481 | 1.46 | 1000 | 2.0112 | 93.7727 | 73.3021 | 84.2963 | 84.2506 |
|
70 |
+
| 2.0113 | 2.93 | 2000 | 2.0579 | 93.813 | 73.4119 | 84.3674 | 84.2693 |
|
71 |
+
| 2.054 | 4.39 | 3000 | 2.0890 | 93.3926 | 73.3727 | 84.2814 | 84.1649 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.18.0
|
77 |
+
- Pytorch 1.11.0
|
78 |
+
- Datasets 2.1.0
|
79 |
+
- Tokenizers 0.12.1
|