domenicrosati commited on
Commit
8c4579f
·
1 Parent(s): f61c62f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - text-classification
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ model-index:
10
+ - name: deberta-v3-xsmall-finetuned-DAGPap22
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # deberta-v3-xsmall-finetuned-DAGPap22
18
+
19
+ This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.1285
22
+ - Accuracy: 0.9794
23
+ - F1: 0.9850
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 4.5e-05
43
+ - train_batch_size: 12
44
+ - eval_batch_size: 12
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 1000
49
+ - num_epochs: 5
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
56
+ | No log | 1.0 | 402 | 0.2610 | 0.9477 | 0.9621 |
57
+ | 0.4318 | 2.0 | 804 | 0.2039 | 0.9421 | 0.9559 |
58
+ | 0.1105 | 3.0 | 1206 | 0.1734 | 0.9664 | 0.9748 |
59
+ | 0.0451 | 4.0 | 1608 | 0.1000 | 0.9850 | 0.9890 |
60
+ | 0.0073 | 5.0 | 2010 | 0.1285 | 0.9794 | 0.9850 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.18.0
66
+ - Pytorch 1.11.0
67
+ - Datasets 2.1.0
68
+ - Tokenizers 0.12.1