domenicrosati commited on
Commit
6388a91
1 Parent(s): 6964736

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - text-classification
5
+ - generated_from_trainer
6
+ metrics:
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: deberta-v3-large-finetuned-synthetic-paraphrase-only
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # deberta-v3-large-finetuned-synthetic-paraphrase-only
19
+
20
+ This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0120
23
+ - F1: 0.9768
24
+ - Precision: 0.9961
25
+ - Recall: 0.9583
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 6e-06
45
+ - train_batch_size: 8
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_steps: 50
51
+ - num_epochs: 3
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:------:|
58
+ | 0.0086 | 1.0 | 10205 | 0.0114 | 0.9642 | 0.9846 | 0.9446 |
59
+ | 0.0059 | 2.0 | 20410 | 0.0143 | 0.9658 | 0.9961 | 0.9373 |
60
+ | 0.0 | 3.0 | 30615 | 0.0141 | 0.9716 | 0.9961 | 0.9483 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.20.1
66
+ - Pytorch 1.11.0
67
+ - Datasets 2.1.0
68
+ - Tokenizers 0.12.1