dodge99's picture
Initial commit
196e1ec
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e91d5fef0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e91d5ff80>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e91d68050>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e91d680e0>",
"_build": "<function ActorCriticPolicy._build at 0x7f7e91d68170>",
"forward": "<function ActorCriticPolicy.forward at 0x7f7e91d68200>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e91d68290>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f7e91d68320>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e91d683b0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e91d68440>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e91d684d0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f7e91da2de0>"
},
"verbose": 1,
"policy_kwargs": {
":type:": "<class 'dict'>",
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
"log_std_init": -2,
"ortho_init": false,
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
"optimizer_kwargs": {
"alpha": 0.99,
"eps": 1e-05,
"weight_decay": 0
}
},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"_shape": [
28
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_np_random": null
},
"n_envs": 4,
"num_timesteps": 1024,
"_total_timesteps": 1000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1668007964742022040,
"learning_rate": 0.00096,
"tensorboard_log": "./tensorboard",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAzQ+ePyniwj0j7zY/7sRKvYszYj3xDmk+kKIEPmRkkb+S0eA+wun9vDdvAkBlv7C9FUIsP5H+vLyWs1Y/YlSDPSamgr99CJg8KFEuP2dIYD2yqoW/X8TpPF1c2T8POcS92VHLPnFO1T5uMf0+bnSxPmYsHL88H9u92HFEPwnrgTwFeEM9XrNGPufp6D/1EFvArjfiPs1oirxDUAJAz2kLvszJEsDVqWW8GxkDPswJgz2dVq4/LbYUPfOB2T+j9J09qqmFv+sJ+T1Ubtk/j6CMvTMqIcBxTtU+bjH9Pm50sT6oKje/eqsOwJhcG8AkhoK9lmBqPen6az7argI+lKGsPlHdSsAo8oq8vIz2vruuu72BUhLAm3+KvKp1Cz7ID4M93wh5v+NuyTwXFHE9275QPZARN79feQo9dWsPv9J3vb3ZUcs+cU7VPm4x/T5udLE+Lsm/Pz12oT63TRc/Ud6xvRbaFj7Dz2w+C0GIPQT0Tb+74OI+DACnvSpbAkDHxI+90WoiPxEKL7zhfgw+PRYJPFY/gr+iKT87DaI0PbM9CT2qn4W/5jVcPSyXyz9QW9m92VHLPnFO1T5uMf0+bnSxPpR0lGIu"
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAPA3D7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIArfPg9AAAAACvYAMAAAAAAcHXfvQAAAADcuvM/AAAAAI/tgbwAAAAAJoztPwAAAABpvhA+AAAAAKp62r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+AuE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASFYFvgAAAABSy/y/AAAAAOVMDz4AAAAAS/HvPwAAAADobQA+AAAAADsY7j8AAAAA2MnFPQAAAADgcNq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFuJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOMOCr4AAAAAHPLxvwAAAAASE108AAAAAI4M4D8AAAAAgumfPQAAAAC53P0/AAAAAE+2OD0AAAAA9enrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJS71rUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBc4c88AAAAAOkeAMAAAAAAkHDKvAAAAADDj+w/AAAAAKQQWb0AAAAAZuPePwAAAADn4gS9AAAAAMIl/b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
},
"_episode_num": 0,
"use_sde": true,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.02400000000000002,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gASVRQAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUfZQojAFylEdACiXY150KZ4wBbJRLFYwBdJRHQEAJf1pTMq11YS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 133,
"n_steps": 8,
"gamma": 0.99,
"gae_lambda": 0.9,
"ent_coef": 0.0,
"vf_coef": 0.4,
"max_grad_norm": 0.5,
"normalize_advantage": false
}