AutoTrain documentation

Object Detection Parameters

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v0.8.24).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Object Detection Parameters

class autotrain.trainers.object_detection.params.ObjectDetectionParams

< >

( data_path: str = None model: str = 'google/vit-base-patch16-224' username: Optional = None lr: float = 5e-05 epochs: int = 3 batch_size: int = 8 warmup_ratio: float = 0.1 gradient_accumulation: int = 1 optimizer: str = 'adamw_torch' scheduler: str = 'linear' weight_decay: float = 0.0 max_grad_norm: float = 1.0 seed: int = 42 train_split: str = 'train' valid_split: Optional = None logging_steps: int = -1 project_name: str = 'project-name' auto_find_batch_size: bool = False mixed_precision: Optional = None save_total_limit: int = 1 token: Optional = None push_to_hub: bool = False eval_strategy: str = 'epoch' image_column: str = 'image' objects_column: str = 'objects' log: str = 'none' image_square_size: Optional = 600 early_stopping_patience: int = 5 early_stopping_threshold: float = 0.01 )

Parameters

  • data_path (str) — Path to the dataset.
  • model (str) — Name of the model to be used. Default is “google/vit-base-patch16-224”.
  • username (Optional[str]) — Hugging Face Username.
  • lr (float) — Learning rate. Default is 5e-5.
  • epochs (int) — Number of training epochs. Default is 3.
  • batch_size (int) — Training batch size. Default is 8.
  • warmup_ratio (float) — Warmup proportion. Default is 0.1.
  • gradient_accumulation (int) — Gradient accumulation steps. Default is 1.
  • optimizer (str) — Optimizer to be used. Default is “adamw_torch”.
  • scheduler (str) — Scheduler to be used. Default is “linear”.
  • weight_decay (float) — Weight decay. Default is 0.0.
  • max_grad_norm (float) — Max gradient norm. Default is 1.0.
  • seed (int) — Random seed. Default is 42.
  • train_split (str) — Name of the training data split. Default is “train”.
  • valid_split (Optional[str]) — Name of the validation data split.
  • logging_steps (int) — Number of steps between logging. Default is -1.
  • project_name (str) — Name of the project for output directory. Default is “project-name”.
  • auto_find_batch_size (bool) — Whether to automatically find batch size. Default is False.
  • mixed_precision (Optional[str]) — Mixed precision type (fp16, bf16, or None).
  • save_total_limit (int) — Total number of checkpoints to save. Default is 1.
  • token (Optional[str]) — Hub Token for authentication.
  • push_to_hub (bool) — Whether to push the model to the Hugging Face Hub. Default is False.
  • eval_strategy (str) — Evaluation strategy. Default is “epoch”.
  • image_column (str) — Name of the image column in the dataset. Default is “image”.
  • objects_column (str) — Name of the target column in the dataset. Default is “objects”.
  • log (str) — Logging method for experiment tracking. Default is “none”.
  • image_square_size (Optional[int]) — Longest size to which the image will be resized, then padded to square. Default is 600.
  • early_stopping_patience (int) — Number of epochs with no improvement after which training will be stopped. Default is 5.
  • early_stopping_threshold (float) — Minimum change to qualify as an improvement. Default is 0.01.

ObjectDetectionParams is a configuration class for object detection training parameters.

< > Update on GitHub