You are viewing main version, which requires installation from source. If you'd like
regular pip install, checkout the latest stable version (v0.8.24).
Starting the UI
To run the autotrain cli locally or in colab, install autotrain-advanced python package:
$ pip install autotrain-advanced
and then run the following command:
$ export HF_TOKEN=your_hugging_face_write_token
$ autotrain --help
This will start the app on http://127.0.0.1:8000
.
AutoTrain doesn’t install pytorch, torchaudio, torchvision, or any other dependencies. You will need to install them separately. It is thus recommended to use conda environment:
$ conda create -n autotrain python=3.10
$ conda activate autotrain
$ pip install autotrain-advanced
$ conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
$ conda install -c "nvidia/label/cuda-12.1.0" cuda-nvcc
$ conda install xformers -c xformers
$ python -m nltk.downloader punkt
$ pip install flash-attn --no-build-isolation
$ pip install deepspeed
$ export HF_TOKEN=your_hugging_face_write_token
$ autotrain --help
This will show the CLI commands that can be used:
$ autotrain --help
usage: autotrain <command> [<args>]
positional arguments:
{
app,
llm,
setup,
dreambooth,
api,
text-classification,
image-classification,
tabular,
spacerunner,
seq2seq,
token-classification
}
commands
options:
-h, --help show this help message and exit
--version, -v Display AutoTrain version
For more information about a command, run: `autotrain <command> --help`
The autotrain commands that end users will be interested in are:
app
: Start the AutoTrain UIllm
: Train a language modeldreambooth
: Train a model using DreamBoothtext-classification
: Train a text classification modelimage-classification
: Train an image classification modeltabular
: Train a tabular modelspacerunner
: Train any custom model using SpaceRunnerseq2seq
: Train a sequence-to-sequence modeltoken-classification
: Train a token classification model
In case of any issues, please report on the GitHub issues.
< > Update on GitHub