Update README.md
Browse files
README.md
CHANGED
@@ -1,112 +1,23 @@
|
|
1 |
-
|
2 |
-
license: apache-2.0
|
3 |
-
datasets:
|
4 |
-
- stanfordnlp/imdb
|
5 |
-
- uoft-cs/cifar10
|
6 |
-
- superlazycoder/slc-titanic
|
7 |
-
language:
|
8 |
-
- en
|
9 |
-
metrics:
|
10 |
-
- bertscore
|
11 |
-
library_name: transformers
|
12 |
-
pipeline_tag: text-generation
|
13 |
-
tags:
|
14 |
-
- code
|
15 |
-
- medical
|
16 |
-
---
|
17 |
-
# Agentic Unified Mind UANN
|
18 |
-
|
19 |
-
This repository contains the implementation of the Agentic Unified Mind Universal Adaptive Neural Network (UANN), a multi-modal AI model designed to integrate text, image, and structured data processing. The model uses advanced neural network architectures and reinforcement learning to deliver robust performance across various applications.
|
20 |
|
21 |
## Model Description
|
22 |
|
23 |
-
|
24 |
-
- Text processing using BERT.
|
25 |
-
- Image processing using ResNet50.
|
26 |
-
- Structured data processing with dense neural networks.
|
27 |
-
- Reinforcement learning for autonomous decision-making.
|
28 |
-
|
29 |
-
## Features
|
30 |
-
|
31 |
-
- **Multi-modal Inputs:** Handles text, images, and structured data.
|
32 |
-
- **Advanced Neural Network Architectures:** Uses BERT for text, ResNet50 for images, and dense layers for structured data.
|
33 |
-
- **Unified Cognitive Framework:** Combines information from multiple modalities for better decision-making.
|
34 |
-
- **Reinforcement Learning:** Enhances the model's ability to learn and adapt from interactions.
|
35 |
-
|
36 |
-
## Setup
|
37 |
-
|
38 |
-
### 1. Installation
|
39 |
-
|
40 |
-
Install the required dependencies:
|
41 |
-
|
42 |
-
```bash
|
43 |
-
pip install -r requirements.txt
|
44 |
-
```
|
45 |
-
|
46 |
-
### 2. Model Training
|
47 |
-
|
48 |
-
To train the model, run:
|
49 |
-
|
50 |
-
```bash
|
51 |
-
python app.py
|
52 |
-
```
|
53 |
-
|
54 |
-
### 3. API Integration
|
55 |
-
|
56 |
-
The project includes a Flask API for storing and retrieving model predictions.
|
57 |
-
|
58 |
-
**API Setup:**
|
59 |
-
|
60 |
-
1. Install Flask and necessary libraries:
|
61 |
-
|
62 |
-
```bash
|
63 |
-
pip install flask flask_sqlalchemy flask_cors
|
64 |
-
```
|
65 |
-
|
66 |
-
2. Configure your database URI in `api.py`.
|
67 |
-
|
68 |
-
3. Run the Flask API:
|
69 |
-
|
70 |
-
```bash
|
71 |
-
python api.py
|
72 |
-
```
|
73 |
-
|
74 |
-
### 4. Gradio Interface
|
75 |
-
|
76 |
-
To launch the Gradio interface:
|
77 |
-
|
78 |
-
```bash
|
79 |
-
python app.py
|
80 |
-
```
|
81 |
-
|
82 |
-
### Directory Structure
|
83 |
-
|
84 |
-
```
|
85 |
-
agentic_uann_model/
|
86 |
-
βββ app.py
|
87 |
-
βββ api.py
|
88 |
-
βββ requirements.txt
|
89 |
-
βββ models/
|
90 |
-
βββ model_files/
|
91 |
-
```
|
92 |
-
|
93 |
-
## Deployment
|
94 |
-
|
95 |
-
1. Push your repository to Hugging Face Spaces.
|
96 |
-
2. Navigate to Hugging Face Spaces and create a new Space.
|
97 |
-
3. Select "Gradio" as the framework.
|
98 |
-
4. Connect your GitHub repository or upload the files directly.
|
99 |
-
5. Choose the desired hardware, such as an A100 40GB GPU.
|
100 |
|
101 |
## Usage
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
## License
|
107 |
|
108 |
-
|
|
|
109 |
|
110 |
-
|
|
|
|
|
|
|
111 |
|
112 |
-
|
|
|
|
|
|
1 |
+
# UANN Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
## Model Description
|
4 |
|
5 |
+
This is the Universal Adaptive Neural Network (UANN) designed for multi-modal AI agents. The model incorporates a Mixture of Experts (MoE) architecture.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
## Usage
|
8 |
|
9 |
+
```python
|
10 |
+
import torch
|
11 |
+
from models.moe_model import MoEModel
|
|
|
12 |
|
13 |
+
# Initialize model
|
14 |
+
model = MoEModel(input_dim=512, num_experts=3)
|
15 |
|
16 |
+
# Dummy inputs for testing
|
17 |
+
vision_input = torch.randn(1, 3, 32, 32)
|
18 |
+
audio_input = torch.randn(1, 100, 40)
|
19 |
+
sensor_input = torch.randn(1, 10)
|
20 |
|
21 |
+
# Forward pass
|
22 |
+
output = model(vision_input, audio_input, sensor_input)
|
23 |
+
print(output)
|