Adapters
English
code
medical
dnnsdunca commited on
Commit
545193d
β€’
1 Parent(s): 2621e16

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -103
README.md CHANGED
@@ -1,112 +1,23 @@
1
- ---
2
- license: apache-2.0
3
- datasets:
4
- - stanfordnlp/imdb
5
- - uoft-cs/cifar10
6
- - superlazycoder/slc-titanic
7
- language:
8
- - en
9
- metrics:
10
- - bertscore
11
- library_name: transformers
12
- pipeline_tag: text-generation
13
- tags:
14
- - code
15
- - medical
16
- ---
17
- # Agentic Unified Mind UANN
18
-
19
- This repository contains the implementation of the Agentic Unified Mind Universal Adaptive Neural Network (UANN), a multi-modal AI model designed to integrate text, image, and structured data processing. The model uses advanced neural network architectures and reinforcement learning to deliver robust performance across various applications.
20
 
21
  ## Model Description
22
 
23
- The Agentic Unified Mind UANN integrates:
24
- - Text processing using BERT.
25
- - Image processing using ResNet50.
26
- - Structured data processing with dense neural networks.
27
- - Reinforcement learning for autonomous decision-making.
28
-
29
- ## Features
30
-
31
- - **Multi-modal Inputs:** Handles text, images, and structured data.
32
- - **Advanced Neural Network Architectures:** Uses BERT for text, ResNet50 for images, and dense layers for structured data.
33
- - **Unified Cognitive Framework:** Combines information from multiple modalities for better decision-making.
34
- - **Reinforcement Learning:** Enhances the model's ability to learn and adapt from interactions.
35
-
36
- ## Setup
37
-
38
- ### 1. Installation
39
-
40
- Install the required dependencies:
41
-
42
- ```bash
43
- pip install -r requirements.txt
44
- ```
45
-
46
- ### 2. Model Training
47
-
48
- To train the model, run:
49
-
50
- ```bash
51
- python app.py
52
- ```
53
-
54
- ### 3. API Integration
55
-
56
- The project includes a Flask API for storing and retrieving model predictions.
57
-
58
- **API Setup:**
59
-
60
- 1. Install Flask and necessary libraries:
61
-
62
- ```bash
63
- pip install flask flask_sqlalchemy flask_cors
64
- ```
65
-
66
- 2. Configure your database URI in `api.py`.
67
-
68
- 3. Run the Flask API:
69
-
70
- ```bash
71
- python api.py
72
- ```
73
-
74
- ### 4. Gradio Interface
75
-
76
- To launch the Gradio interface:
77
-
78
- ```bash
79
- python app.py
80
- ```
81
-
82
- ### Directory Structure
83
-
84
- ```
85
- agentic_uann_model/
86
- β”œβ”€β”€ app.py
87
- β”œβ”€β”€ api.py
88
- β”œβ”€β”€ requirements.txt
89
- └── models/
90
- └── model_files/
91
- ```
92
-
93
- ## Deployment
94
-
95
- 1. Push your repository to Hugging Face Spaces.
96
- 2. Navigate to Hugging Face Spaces and create a new Space.
97
- 3. Select "Gradio" as the framework.
98
- 4. Connect your GitHub repository or upload the files directly.
99
- 5. Choose the desired hardware, such as an A100 40GB GPU.
100
 
101
  ## Usage
102
 
103
- - **Chat Interface:** Interact with the model using a chat interface.
104
- - **Code Execution:** Execute code snippets and view outputs.
105
-
106
- ## License
107
 
108
- This project is licensed under the Apache 2.0 License. See the [LICENSE](LICENSE) file for more details.
 
109
 
110
- ---
 
 
 
111
 
112
- By following this guide, you will be able to set up and deploy the Agentic Unified Mind UANN, leveraging its multi-modal processing capabilities and reinforcement learning framework.
 
 
 
1
+ # UANN Model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  ## Model Description
4
 
5
+ This is the Universal Adaptive Neural Network (UANN) designed for multi-modal AI agents. The model incorporates a Mixture of Experts (MoE) architecture.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  ## Usage
8
 
9
+ ```python
10
+ import torch
11
+ from models.moe_model import MoEModel
 
12
 
13
+ # Initialize model
14
+ model = MoEModel(input_dim=512, num_experts=3)
15
 
16
+ # Dummy inputs for testing
17
+ vision_input = torch.randn(1, 3, 32, 32)
18
+ audio_input = torch.randn(1, 100, 40)
19
+ sensor_input = torch.randn(1, 10)
20
 
21
+ # Forward pass
22
+ output = model(vision_input, audio_input, sensor_input)
23
+ print(output)