import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class AudioExpert(nn.Module): | |
def __init__(self): | |
super(AudioExpert, self).__init__() | |
self.rnn = nn.LSTM(input_size=40, hidden_size=128, num_layers=2, batch_first=True) | |
self.fc1 = nn.Linear(128, 128) | |
def forward(self, x): | |
h0 = torch.zeros(2, x.size(0), 128).to(x.device) | |
c0 = torch.zeros(2, x.size(0), 128).to(x.device) | |
x, _ = self.rnn(x, (h0, c0)) | |
x = F.relu(self.fc1(x[:, -1, :])) | |
return x | |