|
from transformers import Trainer, AutoModelForSequenceClassification, AutoTokenizer |
|
from datasets import load_dataset, load_metric |
|
import json |
|
|
|
|
|
with open('../config/config.json') as f: |
|
config = json.load(f) |
|
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained('../model') |
|
tokenizer = AutoTokenizer.from_pretrained(config['model_name']) |
|
|
|
|
|
dataset = load_dataset('csv', data_files={'test': '../data/test.csv'}) |
|
tokenized_datasets = dataset.map(lambda x: tokenizer(x['text'], padding="max_length", truncation=True), batched=True) |
|
|
|
|
|
metric = load_metric("accuracy") |
|
|
|
def compute_metrics(eval_pred): |
|
logits, labels = eval_pred |
|
predictions = logits.argmax(axis=-1) |
|
return metric.compute(predictions=predictions, references=labels) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
tokenizer=tokenizer, |
|
compute_metrics=compute_metrics |
|
) |
|
|
|
results = trainer.evaluate(tokenized_datasets['test']) |
|
print(results) |
|
|