Commit
·
4907fcb
1
Parent(s):
662f57e
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: xlm-roberta-large-TASTESet-ner
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# xlm-roberta-large-TASTESet-ner
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.4970
|
23 |
+
- Precision: 0.8662
|
24 |
+
- Recall: 0.8989
|
25 |
+
- F1: 0.8822
|
26 |
+
- Accuracy: 0.8889
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 31 | 1.8592 | 0.3077 | 0.4305 | 0.3589 | 0.4376 |
|
58 |
+
| No log | 2.0 | 62 | 1.3188 | 0.4793 | 0.5445 | 0.5098 | 0.5884 |
|
59 |
+
| No log | 3.0 | 93 | 1.1581 | 0.5382 | 0.6134 | 0.5733 | 0.6391 |
|
60 |
+
| No log | 4.0 | 124 | 1.1373 | 0.6480 | 0.5964 | 0.6211 | 0.6522 |
|
61 |
+
| No log | 5.0 | 155 | 0.8784 | 0.6969 | 0.7370 | 0.7164 | 0.7425 |
|
62 |
+
| No log | 6.0 | 186 | 0.7242 | 0.7472 | 0.7823 | 0.7643 | 0.7930 |
|
63 |
+
| No log | 7.0 | 217 | 0.6340 | 0.7869 | 0.8258 | 0.8058 | 0.8225 |
|
64 |
+
| No log | 8.0 | 248 | 0.5766 | 0.7832 | 0.8562 | 0.8180 | 0.8391 |
|
65 |
+
| No log | 9.0 | 279 | 0.5200 | 0.8087 | 0.8702 | 0.8383 | 0.8583 |
|
66 |
+
| No log | 10.0 | 310 | 0.4981 | 0.8495 | 0.8722 | 0.8607 | 0.8642 |
|
67 |
+
| No log | 11.0 | 341 | 0.4732 | 0.8510 | 0.8836 | 0.8670 | 0.8762 |
|
68 |
+
| No log | 12.0 | 372 | 0.4884 | 0.8593 | 0.8801 | 0.8696 | 0.8746 |
|
69 |
+
| No log | 13.0 | 403 | 0.4701 | 0.8444 | 0.8893 | 0.8663 | 0.8825 |
|
70 |
+
| No log | 14.0 | 434 | 0.4759 | 0.8576 | 0.8898 | 0.8734 | 0.8814 |
|
71 |
+
| No log | 15.0 | 465 | 0.4765 | 0.8596 | 0.8945 | 0.8767 | 0.8840 |
|
72 |
+
| No log | 16.0 | 496 | 0.4817 | 0.8610 | 0.8984 | 0.8793 | 0.8881 |
|
73 |
+
| 0.7221 | 17.0 | 527 | 0.4904 | 0.8572 | 0.8989 | 0.8775 | 0.8869 |
|
74 |
+
| 0.7221 | 18.0 | 558 | 0.4971 | 0.8640 | 0.8969 | 0.8802 | 0.8869 |
|
75 |
+
| 0.7221 | 19.0 | 589 | 0.4954 | 0.8595 | 0.9024 | 0.8804 | 0.8894 |
|
76 |
+
| 0.7221 | 20.0 | 620 | 0.4970 | 0.8662 | 0.8989 | 0.8822 | 0.8889 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.26.0
|
82 |
+
- Pytorch 1.13.1+cu117
|
83 |
+
- Datasets 2.9.0
|
84 |
+
- Tokenizers 0.13.2
|