dmargutierrez commited on
Commit
4907fcb
·
1 Parent(s): 662f57e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: xlm-roberta-large-TASTESet-ner
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # xlm-roberta-large-TASTESet-ner
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.4970
23
+ - Precision: 0.8662
24
+ - Recall: 0.8989
25
+ - F1: 0.8822
26
+ - Accuracy: 0.8889
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 31 | 1.8592 | 0.3077 | 0.4305 | 0.3589 | 0.4376 |
58
+ | No log | 2.0 | 62 | 1.3188 | 0.4793 | 0.5445 | 0.5098 | 0.5884 |
59
+ | No log | 3.0 | 93 | 1.1581 | 0.5382 | 0.6134 | 0.5733 | 0.6391 |
60
+ | No log | 4.0 | 124 | 1.1373 | 0.6480 | 0.5964 | 0.6211 | 0.6522 |
61
+ | No log | 5.0 | 155 | 0.8784 | 0.6969 | 0.7370 | 0.7164 | 0.7425 |
62
+ | No log | 6.0 | 186 | 0.7242 | 0.7472 | 0.7823 | 0.7643 | 0.7930 |
63
+ | No log | 7.0 | 217 | 0.6340 | 0.7869 | 0.8258 | 0.8058 | 0.8225 |
64
+ | No log | 8.0 | 248 | 0.5766 | 0.7832 | 0.8562 | 0.8180 | 0.8391 |
65
+ | No log | 9.0 | 279 | 0.5200 | 0.8087 | 0.8702 | 0.8383 | 0.8583 |
66
+ | No log | 10.0 | 310 | 0.4981 | 0.8495 | 0.8722 | 0.8607 | 0.8642 |
67
+ | No log | 11.0 | 341 | 0.4732 | 0.8510 | 0.8836 | 0.8670 | 0.8762 |
68
+ | No log | 12.0 | 372 | 0.4884 | 0.8593 | 0.8801 | 0.8696 | 0.8746 |
69
+ | No log | 13.0 | 403 | 0.4701 | 0.8444 | 0.8893 | 0.8663 | 0.8825 |
70
+ | No log | 14.0 | 434 | 0.4759 | 0.8576 | 0.8898 | 0.8734 | 0.8814 |
71
+ | No log | 15.0 | 465 | 0.4765 | 0.8596 | 0.8945 | 0.8767 | 0.8840 |
72
+ | No log | 16.0 | 496 | 0.4817 | 0.8610 | 0.8984 | 0.8793 | 0.8881 |
73
+ | 0.7221 | 17.0 | 527 | 0.4904 | 0.8572 | 0.8989 | 0.8775 | 0.8869 |
74
+ | 0.7221 | 18.0 | 558 | 0.4971 | 0.8640 | 0.8969 | 0.8802 | 0.8869 |
75
+ | 0.7221 | 19.0 | 589 | 0.4954 | 0.8595 | 0.9024 | 0.8804 | 0.8894 |
76
+ | 0.7221 | 20.0 | 620 | 0.4970 | 0.8662 | 0.8989 | 0.8822 | 0.8889 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.26.0
82
+ - Pytorch 1.13.1+cu117
83
+ - Datasets 2.9.0
84
+ - Tokenizers 0.13.2