dmargutierrez commited on
Commit
c6fab31
1 Parent(s): d1a4208

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wnut_17
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bert-base-multilingual-cased-WNUT-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: wnut_17
20
+ type: wnut_17
21
+ config: wnut_17
22
+ split: test
23
+ args: wnut_17
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.5913669064748202
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.3809082483781279
31
+ - name: F1
32
+ type: f1
33
+ value: 0.463359639233371
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9500726682055228
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # bert-base-multilingual-cased-WNUT-ner
43
+
44
+ This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wnut_17 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.3832
47
+ - Precision: 0.5914
48
+ - Recall: 0.3809
49
+ - F1: 0.4634
50
+ - Accuracy: 0.9501
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 16
71
+ - eval_batch_size: 16
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 10
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 213 | 0.2791 | 0.6008 | 0.2817 | 0.3836 | 0.9427 |
82
+ | No log | 2.0 | 426 | 0.2697 | 0.6520 | 0.3299 | 0.4382 | 0.9479 |
83
+ | 0.148 | 3.0 | 639 | 0.2846 | 0.5783 | 0.3661 | 0.4484 | 0.9492 |
84
+ | 0.148 | 4.0 | 852 | 0.3032 | 0.6248 | 0.3642 | 0.4602 | 0.9500 |
85
+ | 0.0413 | 5.0 | 1065 | 0.3355 | 0.5729 | 0.3568 | 0.4397 | 0.9495 |
86
+ | 0.0413 | 6.0 | 1278 | 0.3343 | 0.5714 | 0.3892 | 0.4631 | 0.9501 |
87
+ | 0.0413 | 7.0 | 1491 | 0.3522 | 0.5877 | 0.3818 | 0.4629 | 0.9500 |
88
+ | 0.0182 | 8.0 | 1704 | 0.3844 | 0.6120 | 0.3698 | 0.4610 | 0.9499 |
89
+ | 0.0182 | 9.0 | 1917 | 0.3847 | 0.5986 | 0.3828 | 0.4669 | 0.9504 |
90
+ | 0.008 | 10.0 | 2130 | 0.3832 | 0.5914 | 0.3809 | 0.4634 | 0.9501 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.26.0
96
+ - Pytorch 1.13.1+cu117
97
+ - Datasets 2.9.0
98
+ - Tokenizers 0.13.2