dmargutierrez
commited on
Commit
•
c6fab31
1
Parent(s):
d1a4208
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- wnut_17
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: bert-base-multilingual-cased-WNUT-ner
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: wnut_17
|
20 |
+
type: wnut_17
|
21 |
+
config: wnut_17
|
22 |
+
split: test
|
23 |
+
args: wnut_17
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.5913669064748202
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.3809082483781279
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.463359639233371
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9500726682055228
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# bert-base-multilingual-cased-WNUT-ner
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wnut_17 dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.3832
|
47 |
+
- Precision: 0.5914
|
48 |
+
- Recall: 0.3809
|
49 |
+
- F1: 0.4634
|
50 |
+
- Accuracy: 0.9501
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 16
|
71 |
+
- eval_batch_size: 16
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 10
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 213 | 0.2791 | 0.6008 | 0.2817 | 0.3836 | 0.9427 |
|
82 |
+
| No log | 2.0 | 426 | 0.2697 | 0.6520 | 0.3299 | 0.4382 | 0.9479 |
|
83 |
+
| 0.148 | 3.0 | 639 | 0.2846 | 0.5783 | 0.3661 | 0.4484 | 0.9492 |
|
84 |
+
| 0.148 | 4.0 | 852 | 0.3032 | 0.6248 | 0.3642 | 0.4602 | 0.9500 |
|
85 |
+
| 0.0413 | 5.0 | 1065 | 0.3355 | 0.5729 | 0.3568 | 0.4397 | 0.9495 |
|
86 |
+
| 0.0413 | 6.0 | 1278 | 0.3343 | 0.5714 | 0.3892 | 0.4631 | 0.9501 |
|
87 |
+
| 0.0413 | 7.0 | 1491 | 0.3522 | 0.5877 | 0.3818 | 0.4629 | 0.9500 |
|
88 |
+
| 0.0182 | 8.0 | 1704 | 0.3844 | 0.6120 | 0.3698 | 0.4610 | 0.9499 |
|
89 |
+
| 0.0182 | 9.0 | 1917 | 0.3847 | 0.5986 | 0.3828 | 0.4669 | 0.9504 |
|
90 |
+
| 0.008 | 10.0 | 2130 | 0.3832 | 0.5914 | 0.3809 | 0.4634 | 0.9501 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.26.0
|
96 |
+
- Pytorch 1.13.1+cu117
|
97 |
+
- Datasets 2.9.0
|
98 |
+
- Tokenizers 0.13.2
|