Reinforce_cartpol-v1 / policy_gradient.py
dlwlgus53's picture
Upload folder using huggingface_hub
500ac24 verified
import numpy as np
from collections import deque
import matplotlib.pyplot as plt
import pdb
# PyTorch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
# Gym
import gym
import gym_pygame
# Hugging Face Hub
from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.
import imageio
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
env_id = "CartPole-v1"
# Create the env
env = gym.make(env_id, render_mode="rgb_array")
# Create the evaluation env
eval_env = gym.make(env_id, render_mode="rgb_array")
# Get the state space and action space
s_size = env.observation_space.shape[0]
a_size = env.action_space.n
print("_____OBSERVATION SPACE_____ \n")
print("The State Space is: ", s_size)
# cart postion, cart velocity, pole angle, pole velocity at tip
print("Sample observation", env.observation_space.sample()) # Get a random observation
print("\n _____ACTION SPACE_____ \n")
print("The Action Space is: ", a_size)
print("Action Space Sample", env.action_space.sample()) # Take a random action
# Policy Gradient Network
class Policy(nn.Module):
def __init__(self, s_size, a_size, h_size):
super(Policy, self).__init__()
self.fc1 = nn.Linear(s_size, h_size)
self.fc2 = nn.Linear(h_size, a_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.softmax(x, dim=1)
def act(self, state):
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
probs = self.forward(state).cpu()[0]
m = Categorical(probs)
action = m.sample()
return action.item(), m.log_prob(action)
def reinforce(policy, optimizer, n_training_episodes, max_t, gamma, print_every):
# Help us to calculate the score during the training
scores_deque = deque(maxlen=100)
scores = []
# Line 3 of pseudocode
for i_episode in range(1, n_training_episodes + 1):
saved_log_probs = []
rewards = []
state = env.reset()[0]
# Line 4 of pseudocode
for t in range(max_t):
action, log_prob = policy.act(state)
saved_log_probs.append(log_prob)
state, reward, done, _ = env.step(action)[0]
rewards.append(reward)
if done:
break
scores_deque.append(sum(rewards))
scores.append(sum(rewards))
# Line 6 of pseudocode: calculate the return
returns = deque(maxlen=max_t)
n_steps = len(rewards)
# Compute the discounted returns at each timestep,
# as
# the sum of the gamma-discounted return at time t (G_t) + the reward at time t
#
# In O(N) time, where N is the number of time steps
# (this definition of the discounted return G_t follows the definition of this quantity
# shown at page 44 of Sutton&Barto 2017 2nd draft)
# G_t = r_(t+1) + r_(t+2) + ...
# Given this formulation, the returns at each timestep t can be computed
# by re-using the computed future returns G_(t+1) to compute the current return G_t
# G_t = r_(t+1) + gamma*G_(t+1)
# G_(t-1) = r_t + gamma* G_t
# (this follows a dynamic programming approach, with which we memorize solutions in order
# to avoid computing them multiple times)
# This is correct since the above is equivalent to (see also page 46 of Sutton&Barto 2017 2nd draft)
# G_(t-1) = r_t + gamma*r_(t+1) + gamma*gamma*r_(t+2) + ...
## Given the above, we calculate the returns at timestep t as:
# gamma[t] * return[t] + reward[t]
#
## We compute this starting from the last timestep to the first, in order
## to employ the formula presented above and avoid redundant computations that would be needed
## if we were to do it from first to last.
## Hence, the queue "returns" will hold the returns in chronological order, from t=0 to t=n_steps
## thanks to the appendleft() function which allows to append to the position 0 in constant time O(1)
## a normal python list would instead require O(N) to do this.
for t in range(n_steps)[::-1]:
disc_return_t = returns[0] if len(returns) > 0 else 0
returns.appendleft(gamma * disc_return_t + rewards[t])
## standardization of the returns is employed to make training more stable
eps = np.finfo(np.float32).eps.item()
## eps is the smallest representable float, which is
# added to the standard deviation of the returns to avoid numerical instabilities
returns = torch.tensor(returns)
if len(returns) > 1:
returns = (returns - returns.mean()) / (returns.std() + eps)
# Line 7:
policy_loss = []
for log_prob, disc_return in zip(saved_log_probs, returns):
policy_loss.append(-log_prob * disc_return)
if len(policy_loss) > 1:
policy_loss = torch.cat(policy_loss).sum()
else:
policy_loss = policy_loss[0]
# Line 8: PyTorch prefers gradient descent
optimizer.zero_grad()
policy_loss.backward()
optimizer.step()
if i_episode % print_every == 0:
print("Episode {}\tAverage Score: {:.2f}".format(i_episode, np.mean(scores_deque)))
return scores
cartpole_hyperparameters = {
"h_size": 16,
"n_training_episodes": 1000,
"n_evaluation_episodes": 10,
"max_t": 1000,
"gamma": 1.0,
"lr": 1e-2,
"env_id": env_id,
"state_space": s_size,
"action_space": a_size,
}
# Create policy and place it to the device
cartpole_policy = Policy(
cartpole_hyperparameters["state_space"],
cartpole_hyperparameters["action_space"],
cartpole_hyperparameters["h_size"],
).to(device)
cartpole_optimizer = optim.Adam(cartpole_policy.parameters(), lr=cartpole_hyperparameters["lr"])
scores = reinforce(
cartpole_policy,
cartpole_optimizer,
cartpole_hyperparameters["n_training_episodes"],
cartpole_hyperparameters["max_t"],
cartpole_hyperparameters["gamma"],
100,
)
def evaluate_agent(env, max_steps, n_eval_episodes, policy):
"""
Evaluate the agent for ``n_eval_episodes`` episodes and returns average reward and std of reward.
:param env: The evaluation environment
:param n_eval_episodes: Number of episode to evaluate the agent
:param policy: The Reinforce agent
"""
episode_rewards = []
for episode in range(n_eval_episodes):
state = env.reset()[0]
step = 0
done = False
total_rewards_ep = 0
for step in range(max_steps):
action, _ = policy.act(state)
new_state, reward, done, info = env.step(action)[0]
total_rewards_ep += reward
if done:
break
state = new_state
episode_rewards.append(total_rewards_ep)
mean_reward = np.mean(episode_rewards)
std_reward = np.std(episode_rewards)
return mean_reward, std_reward
evaluate_agent(
eval_env, cartpole_hyperparameters["max_t"], cartpole_hyperparameters["n_evaluation_episodes"], cartpole_policy
)
from huggingface_hub import HfApi, snapshot_download
from huggingface_hub.repocard import metadata_eval_result, metadata_save
from pathlib import Path
import datetime
import json
import imageio
import tempfile
import os
def record_video(env, policy, out_directory, fps=30):
"""
Generate a replay video of the agent
:param env
:param Qtable: Qtable of our agent
:param out_directory
:param fps: how many frame per seconds (with taxi-v3 and frozenlake-v1 we use 1)
"""
images = []
done = False
state = env.reset()[0]
img = env.render()
images.append(img)
while not done:
# Take the action (index) that have the maximum expected future reward given that state
action, _ = policy.act(state)
state, reward, done, info = env.step(action)[0] # We directly put next_state = state for recording logic
img = env.render()
images.append(img)
imageio.mimsave(out_directory, [np.array(img) for i, img in enumerate(images)], fps=fps)
def push_to_hub(repo_id,
model,
hyperparameters,
eval_env,
video_fps=30
):
"""
Evaluate, Generate a video and Upload a model to Hugging Face Hub.
This method does the complete pipeline:
- It evaluates the model
- It generates the model card
- It generates a replay video of the agent
- It pushes everything to the Hub
:param repo_id: repo_id: id of the model repository from the Hugging Face Hub
:param model: the pytorch model we want to save
:param hyperparameters: training hyperparameters
:param eval_env: evaluation environment
:param video_fps: how many frame per seconds to record our video replay
"""
_, repo_name = repo_id.split("/")
api = HfApi()
# Step 1: Create the repo
repo_url = api.create_repo(
repo_id=repo_id,
exist_ok=True,
)
local_dir = "./cartpole-v1"
# Step 2: Save the model
torch.save(model, os.path.join(local_dir, "model.pt"))
# Step 3: Save the hyperparameters to JSON
hyper_path = os.path.join(local_dir, "hyperparameters.json")
with open(hyper_path, "w") as outfile:
json.dump(hyperparameters, outfile)
# Step 4: Evaluate the model and build JSON
mean_reward, std_reward = evaluate_agent(eval_env,
hyperparameters["max_t"],
hyperparameters["n_evaluation_episodes"],
model)
# Get datetime
eval_datetime = datetime.datetime.now()
eval_form_datetime = eval_datetime.isoformat()
evaluate_data = {
"env_id": hyperparameters["env_id"],
"mean_reward": mean_reward,
"n_evaluation_episodes": hyperparameters["n_evaluation_episodes"],
"eval_datetime": eval_form_datetime,
}
# Write a JSON file
result_path = os.path.join(local_dir, "results.json")
with open(result_path, "w") as outfile:
json.dump(evaluate_data, outfile)
# Step 5: Create the model card
env_name = hyperparameters["env_id"]
metadata = {}
metadata["tags"] = [
env_name,
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class"
]
# Add metrics
eval = metadata_eval_result(
model_pretty_name=repo_name,
task_pretty_name="reinforcement-learning",
task_id="reinforcement-learning",
metrics_pretty_name="mean_reward",
metrics_id="mean_reward",
metrics_value=f"{mean_reward:.2f} +/- {std_reward:.2f}",
dataset_pretty_name=env_name,
dataset_id=env_name,
)
# Merges both dictionaries
metadata = {**metadata, **eval}
model_card = f"""
# **Reinforce** Agent playing **{env_id}**
This is a trained model of a **Reinforce** agent playing **{env_id}** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
"""
readme_path = Path(local_dir )/ "README.md"
readme = ""
if readme_path.exists():
with readme_path.open("r", encoding="utf8") as f:
readme = f.read()
else:
readme = model_card
with readme_path.open("w", encoding="utf-8") as f:
f.write(readme)
# Save our metrics to Readme metadata
metadata_save(readme_path, metadata)
# Step 6: Record a video
video_path = os.path.join(local_dir,"replay.mp4")
record_video(env, model, video_path, video_fps)
# Step 7. Push everything to the Hub
api.upload_folder(
repo_id=repo_id,
folder_path="./",
path_in_repo=".",
)
print(f"Your model is pushed to the Hub. You can view your model here: {repo_url}")
repo_id = "dlwlgus53/Reinforce_cartpol-v1"
push_to_hub(
repo_id,
cartpole_policy, # The model we want to save
cartpole_hyperparameters, # Hyperparameters
eval_env, # Evaluation environment
video_fps=30
)