dlantonia commited on
Commit
11e3dd9
·
verified ·
1 Parent(s): 29f4eb5

Upload PPO Pendulum-v1 trained agent

Browse files
Pendulum-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c68f92b09651c13b81942b2dda7c66f7a4fecd9cce2ce93e22655c58e1138758
3
+ size 138043
Pendulum-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
Pendulum-v1/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79258799edd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79258799ee60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79258799eef0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79258799ef80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79258799f010>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79258799f0a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79258799f130>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79258799f1c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79258799f250>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79258799f2e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79258799f370>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79258799f400>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x792587952480>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1722851737140460513,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHrqVL6wZ3q/bbuFQJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwIxCbNyHVPOMAWyUS8iMAXSUR0CZFfLSeAd5dX2UKGgGR8CQWPTfixVyaAdLyGgIR0CZFvgIhQnAdX2UKGgGR8CQbGNet0V8aAdLyGgIR0CZGTT5ftx/dX2UKGgGR8CM7b1hb4ahaAdLyGgIR0CZGkIyTINmdX2UKGgGR8CKUN5+H8CQaAdLyGgIR0CZGz/I8yN5dX2UKGgGR8CNUdWCEpRXaAdLyGgIR0CZHDLowEhadX2UKGgGR8CPIIOwPiDNaAdLyGgIR0CZHSjNIK+jdX2UKGgGR8CMdeRIz3yqaAdLyGgIR0CZHiofjjrBdX2UKGgGR8CM/Yg8r7O3aAdLyGgIR0CZIED0Dlo2dX2UKGgGR8CMCS/GEPDpaAdLyGgIR0CZIS+9alk6dX2UKGgGR8CL/BxGUfPpaAdLyGgIR0CZIjqgAZKndX2UKGgGR8CNevpt78ekaAdLyGgIR0CZIzC+De0pdX2UKGgGR8CL3EnEVFhHaAdLyGgIR0CZJCsuFpPAdX2UKGgGR8CIWazxgAp8aAdLyGgIR0CZJn/z8P4EdX2UKGgGR8CISvDhLoOhaAdLyGgIR0CZJ4EP1+RYdX2UKGgGR8CP7SBClabGaAdLyGgIR0CZKHhQ3xWldX2UKGgGR8COUdMK1G9YaAdLyGgIR0CZKXoF3Y+TdX2UKGgGR8CObpeXRgJDaAdLyGgIR0CZKohJRO1wdX2UKGgGR8CIWi4EOiFkaAdLyGgIR0CZLMw6hg3MdX2UKGgGR8CMbJ1p0wJxaAdLyGgIR0CZLdEMLF4tdX2UKGgGR8CLcZ7SiM5waAdLyGgIR0CZLs1pj+aSdX2UKGgGR8CPyJjJ+2E1aAdLyGgIR0CZL795hSccdX2UKGgGR8CL8D863iJgaAdLyGgIR0CZMNJpnHvMdX2UKGgGR8CQCeJ6IFeOaAdLyGgIR0CZMwr6tT1kdX2UKGgGR8CMJinhKlHjaAdLyGgIR0CZM/SAH3UQdX2UKGgGR8CEZMmv4dp7aAdLyGgIR0CZNNv2GqPwdX2UKGgGR8CINiyprDZUaAdLyGgIR0CZNccC5mROdX2UKGgGR8CNFvWwu/UOaAdLyGgIR0CZNtFeOXE7dX2UKGgGR8CQVBjMFEApaAdLyGgIR0CZOXf1HvtudX2UKGgGR8CQkaDFId2gaAdLyGgIR0CZOrfdyksSdX2UKGgGR8CIP8oESuhcaAdLyGgIR0CZO+eqJdjYdX2UKGgGR8CNQQvFFUhnaAdLyGgIR0CZPSD0Dlo2dX2UKGgGR8CNWSsCkoF3aAdLyGgIR0CZPnWweNkwdX2UKGgGR8COfC7cO9WZaAdLyGgIR0CZQZI6bONYdX2UKGgGR8CNgzkfcN6PaAdLyGgIR0CZQofMwDeTdX2UKGgGR8CI+MAI6bONaAdLyGgIR0CZQ3uXeFcqdX2UKGgGR8CNVzSG8EmqaAdLyGgIR0CZRGpH7P6bdX2UKGgGR8CQsYXF98Z2aAdLyGgIR0CZRVsenyd4dX2UKGgGR8CQhFBsyi22aAdLyGgIR0CZR4Np/PPcdX2UKGgGR8CKMLri2lVMaAdLyGgIR0CZSHRbbDdhdX2UKGgGR8CMFpER8MNMaAdLyGgIR0CZSVznied1dX2UKGgGR8CMvcgXdj5LaAdLyGgIR0CZSkqYZ2pydX2UKGgGR8CICZVCojwAaAdLyGgIR0CZS0E6T4cndX2UKGgGR8CMHDAvcrRTaAdLyGgIR0CZTV4QSSNgdX2UKGgGR8CMqlrVvuPWaAdLyGgIR0CZTk9ph4MXdX2UKGgGR8CL8Si+L3sYaAdLyGgIR0CZT1BD5TIedX2UKGgGR8CNSWCtA9mpaAdLyGgIR0CZUEU9IPK/dX2UKGgGR8CIYiPnSv1UaAdLyGgIR0CZUUBLwnYydX2UKGgGR8CIpFvqkdmyaAdLyGgIR0CZUjvRqoIfdX2UKGgGR8CIEq7q6e5GaAdLyGgIR0CZVFeqaPS2dX2UKGgGR8CE1roEjgQ6aAdLyGgIR0CZVT/ATIvKdX2UKGgGR8CH6su6ErXlaAdLyGgIR0CZViwyIpH7dX2UKGgGR8CINZkK/mDEaAdLyGgIR0CZVyGNaQmvdX2UKGgGR8CNBZ1zySV4aAdLyGgIR0CZWBVQAMlUdX2UKGgGR8CM5e8f3evZaAdLyGgIR0CZWjARkEs8dX2UKGgGR8CHWLGR3eN2aAdLyGgIR0CZWx2USqVAdX2UKGgGR8CMzyews5GSaAdLyGgIR0CZXBZ7ojfOdX2UKGgGR8CMa0f7rLQpaAdLyGgIR0CZXPtMwlBydX2UKGgGR8CNatNY8uBdaAdLyGgIR0CZXeeTV2A5dX2UKGgGR8CIDnDvVmSRaAdLyGgIR0CZYAzHCGeudX2UKGgGR8CP2f/xUedTaAdLyGgIR0CZYPOwgTysdX2UKGgGR8CMRdn13+uOaAdLyGgIR0CZYdxuKoAGdX2UKGgGR8CMrXRO1v2oaAdLyGgIR0CZYsg2606YdX2UKGgGR8CFkR9Dx9XtaAdLyGgIR0CZY8O09hZydX2UKGgGR8CIfXJeVs1saAdLyGgIR0CZZeTqjaf0dX2UKGgGR8CNp4A4n4O+aAdLyGgIR0CZZtNfgJkYdX2UKGgGR8CJdrvy9VWCaAdLyGgIR0CZZ8y6tknUdX2UKGgGR8CNDCgOBlMAaAdLyGgIR0CZaLxhDw6RdX2UKGgGR8CISgvpyIYWaAdLyGgIR0CZadJwKjSHdX2UKGgGR8CMrg+QEIPcaAdLyGgIR0CZbK6tknTidX2UKGgGR8CJYSob4rSWaAdLyGgIR0CZbdflIVdpdX2UKGgGR8CMfoV4X40uaAdLyGgIR0CZbx8brC3xdX2UKGgGR8CIQ5fx+a0AaAdLyGgIR0CZcH5mAbyZdX2UKGgGR8CH7gCIUJv6aAdLyGgIR0CZcd18LKFJdX2UKGgGR8CMqbwEyLydaAdLyGgIR0CZdP0Q9RrKdX2UKGgGR8CL/A4SYgJUaAdLyGgIR0CZdfQ40dildX2UKGgGR8CJlhyrgflqaAdLyGgIR0CZdvFnZkCndX2UKGgGR8CEH/vrGBFvaAdLyGgIR0CZd+vQWvbHdX2UKGgGR8CHlW5MDfWMaAdLyGgIR0CZeOdSVGCqdX2UKGgGR8CKtNqOcUdraAdLyGgIR0CZew5sj3VTdX2UKGgGR8CIhpS619fDaAdLyGgIR0CZfAHFxXGPdX2UKGgGR8CBsha7EpAlaAdLyGgIR0CZfQJeVs1sdX2UKGgGR8CQTcO7QLNOaAdLyGgIR0CZffbr1M/RdX2UKGgGR8CPjADSw4bTaAdLyGgIR0CZfviuuA7QdX2UKGgGR8CMUkPT5O8DaAdLyGgIR0CZgS1F6RhddX2UKGgGR8CQ0unV5KODaAdLyGgIR0CZgil9BrvcdX2UKGgGR8CL8FpRoAXEaAdLyGgIR0CZgx7HQyAQdX2UKGgGR8CIMSFB6a9caAdLyGgIR0CZhB12q1gIdX2UKGgGR8CLga1YQrc1aAdLyGgIR0CZhSNo8IRidX2UKGgGR8CJNxsGgSOBaAdLyGgIR0CZhh2W6bvxdX2UKGgGR8CMfhqGDcubaAdLyGgIR0CZiEqqfe1sdX2UKGgGR8CH6tLpRoAXaAdLyGgIR0CZiUAUcn3MdX2UKGgGR8CEVg384xUOaAdLyGgIR0CZii6y0KJEdX2UKGgGR8CEo831jAi3aAdLyGgIR0CZix2Q4jrzdX2UKGgGR8CKBjqFh5PeaAdLyGgIR0CZjBFfAsTWdX2UKGgGR8CNnRr8BMi9aAdLyGgIR0CZjlTpgTh6dX2UKGgGR8CKnUef7JnyaAdLyGgIR0CZj1Dq4YrKdX2UKGgGR8CL7fulXRw7aAdLyGgIR0CZkFBw++uedX2UKGgGR8CNGxkf9xZMaAdLyGgIR0CZkVXgLqlhdX2UKGgGR8CK2MtHQQcxaAdLyGgIR0CZklvovBacdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVrQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True]",
60
+ "bounded_above": "[ True True True]",
61
+ "_shape": [
62
+ 3
63
+ ],
64
+ "low": "[-1. -1. -8.]",
65
+ "high": "[1. 1. 8.]",
66
+ "low_repr": "[-1. -1. -8.]",
67
+ "high_repr": "[1. 1. 8.]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAAMCUaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAAECUaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True]",
75
+ "bounded_above": "[ True]",
76
+ "_shape": [
77
+ 1
78
+ ],
79
+ "low": "[-2.]",
80
+ "high": "[2.]",
81
+ "low_repr": "-2.0",
82
+ "high_repr": "2.0",
83
+ "_np_random": null
84
+ },
85
+ "n_envs": 1,
86
+ "n_steps": 1024,
87
+ "gamma": 0.999,
88
+ "gae_lambda": 0.98,
89
+ "ent_coef": 0.01,
90
+ "vf_coef": 0.5,
91
+ "max_grad_norm": 0.5,
92
+ "batch_size": 64,
93
+ "n_epochs": 4,
94
+ "clip_range": {
95
+ ":type:": "<class 'function'>",
96
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
97
+ },
98
+ "clip_range_vf": null,
99
+ "normalize_advantage": true,
100
+ "target_kl": null,
101
+ "lr_schedule": {
102
+ ":type:": "<class 'function'>",
103
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
104
+ }
105
+ }
Pendulum-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffeb55797094608cf6cbd44cd5a743202fdf2a306d67e31698cee6c722109fe4
3
+ size 82401
Pendulum-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84c1deb29a12c9dd8cb81f2dc2067ff723614e8090a8d2f1d5ee02884b147e3c
3
+ size 40751
Pendulum-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
Pendulum-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pendulum-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Pendulum-v1
16
+ type: Pendulum-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -868.96 +/- 94.96
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **Pendulum-v1**
25
+ This is a trained model of a **PPO** agent playing **Pendulum-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79258799edd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79258799ee60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79258799eef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79258799ef80>", "_build": "<function ActorCriticPolicy._build at 0x79258799f010>", "forward": "<function ActorCriticPolicy.forward at 0x79258799f0a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79258799f130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79258799f1c0>", "_predict": "<function ActorCriticPolicy._predict at 0x79258799f250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79258799f2e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79258799f370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79258799f400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x792587952480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722851737140460513, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHrqVL6wZ3q/bbuFQJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwIxCbNyHVPOMAWyUS8iMAXSUR0CZFfLSeAd5dX2UKGgGR8CQWPTfixVyaAdLyGgIR0CZFvgIhQnAdX2UKGgGR8CQbGNet0V8aAdLyGgIR0CZGTT5ftx/dX2UKGgGR8CM7b1hb4ahaAdLyGgIR0CZGkIyTINmdX2UKGgGR8CKUN5+H8CQaAdLyGgIR0CZGz/I8yN5dX2UKGgGR8CNUdWCEpRXaAdLyGgIR0CZHDLowEhadX2UKGgGR8CPIIOwPiDNaAdLyGgIR0CZHSjNIK+jdX2UKGgGR8CMdeRIz3yqaAdLyGgIR0CZHiofjjrBdX2UKGgGR8CM/Yg8r7O3aAdLyGgIR0CZIED0Dlo2dX2UKGgGR8CMCS/GEPDpaAdLyGgIR0CZIS+9alk6dX2UKGgGR8CL/BxGUfPpaAdLyGgIR0CZIjqgAZKndX2UKGgGR8CNevpt78ekaAdLyGgIR0CZIzC+De0pdX2UKGgGR8CL3EnEVFhHaAdLyGgIR0CZJCsuFpPAdX2UKGgGR8CIWazxgAp8aAdLyGgIR0CZJn/z8P4EdX2UKGgGR8CISvDhLoOhaAdLyGgIR0CZJ4EP1+RYdX2UKGgGR8CP7SBClabGaAdLyGgIR0CZKHhQ3xWldX2UKGgGR8COUdMK1G9YaAdLyGgIR0CZKXoF3Y+TdX2UKGgGR8CObpeXRgJDaAdLyGgIR0CZKohJRO1wdX2UKGgGR8CIWi4EOiFkaAdLyGgIR0CZLMw6hg3MdX2UKGgGR8CMbJ1p0wJxaAdLyGgIR0CZLdEMLF4tdX2UKGgGR8CLcZ7SiM5waAdLyGgIR0CZLs1pj+aSdX2UKGgGR8CPyJjJ+2E1aAdLyGgIR0CZL795hSccdX2UKGgGR8CL8D863iJgaAdLyGgIR0CZMNJpnHvMdX2UKGgGR8CQCeJ6IFeOaAdLyGgIR0CZMwr6tT1kdX2UKGgGR8CMJinhKlHjaAdLyGgIR0CZM/SAH3UQdX2UKGgGR8CEZMmv4dp7aAdLyGgIR0CZNNv2GqPwdX2UKGgGR8CINiyprDZUaAdLyGgIR0CZNccC5mROdX2UKGgGR8CNFvWwu/UOaAdLyGgIR0CZNtFeOXE7dX2UKGgGR8CQVBjMFEApaAdLyGgIR0CZOXf1HvtudX2UKGgGR8CQkaDFId2gaAdLyGgIR0CZOrfdyksSdX2UKGgGR8CIP8oESuhcaAdLyGgIR0CZO+eqJdjYdX2UKGgGR8CNQQvFFUhnaAdLyGgIR0CZPSD0Dlo2dX2UKGgGR8CNWSsCkoF3aAdLyGgIR0CZPnWweNkwdX2UKGgGR8COfC7cO9WZaAdLyGgIR0CZQZI6bONYdX2UKGgGR8CNgzkfcN6PaAdLyGgIR0CZQofMwDeTdX2UKGgGR8CI+MAI6bONaAdLyGgIR0CZQ3uXeFcqdX2UKGgGR8CNVzSG8EmqaAdLyGgIR0CZRGpH7P6bdX2UKGgGR8CQsYXF98Z2aAdLyGgIR0CZRVsenyd4dX2UKGgGR8CQhFBsyi22aAdLyGgIR0CZR4Np/PPcdX2UKGgGR8CKMLri2lVMaAdLyGgIR0CZSHRbbDdhdX2UKGgGR8CMFpER8MNMaAdLyGgIR0CZSVznied1dX2UKGgGR8CMvcgXdj5LaAdLyGgIR0CZSkqYZ2pydX2UKGgGR8CICZVCojwAaAdLyGgIR0CZS0E6T4cndX2UKGgGR8CMHDAvcrRTaAdLyGgIR0CZTV4QSSNgdX2UKGgGR8CMqlrVvuPWaAdLyGgIR0CZTk9ph4MXdX2UKGgGR8CL8Si+L3sYaAdLyGgIR0CZT1BD5TIedX2UKGgGR8CNSWCtA9mpaAdLyGgIR0CZUEU9IPK/dX2UKGgGR8CIYiPnSv1UaAdLyGgIR0CZUUBLwnYydX2UKGgGR8CIpFvqkdmyaAdLyGgIR0CZUjvRqoIfdX2UKGgGR8CIEq7q6e5GaAdLyGgIR0CZVFeqaPS2dX2UKGgGR8CE1roEjgQ6aAdLyGgIR0CZVT/ATIvKdX2UKGgGR8CH6su6ErXlaAdLyGgIR0CZViwyIpH7dX2UKGgGR8CINZkK/mDEaAdLyGgIR0CZVyGNaQmvdX2UKGgGR8CNBZ1zySV4aAdLyGgIR0CZWBVQAMlUdX2UKGgGR8CM5e8f3evZaAdLyGgIR0CZWjARkEs8dX2UKGgGR8CHWLGR3eN2aAdLyGgIR0CZWx2USqVAdX2UKGgGR8CMzyews5GSaAdLyGgIR0CZXBZ7ojfOdX2UKGgGR8CMa0f7rLQpaAdLyGgIR0CZXPtMwlBydX2UKGgGR8CNatNY8uBdaAdLyGgIR0CZXeeTV2A5dX2UKGgGR8CIDnDvVmSRaAdLyGgIR0CZYAzHCGeudX2UKGgGR8CP2f/xUedTaAdLyGgIR0CZYPOwgTysdX2UKGgGR8CMRdn13+uOaAdLyGgIR0CZYdxuKoAGdX2UKGgGR8CMrXRO1v2oaAdLyGgIR0CZYsg2606YdX2UKGgGR8CFkR9Dx9XtaAdLyGgIR0CZY8O09hZydX2UKGgGR8CIfXJeVs1saAdLyGgIR0CZZeTqjaf0dX2UKGgGR8CNp4A4n4O+aAdLyGgIR0CZZtNfgJkYdX2UKGgGR8CJdrvy9VWCaAdLyGgIR0CZZ8y6tknUdX2UKGgGR8CNDCgOBlMAaAdLyGgIR0CZaLxhDw6RdX2UKGgGR8CISgvpyIYWaAdLyGgIR0CZadJwKjSHdX2UKGgGR8CMrg+QEIPcaAdLyGgIR0CZbK6tknTidX2UKGgGR8CJYSob4rSWaAdLyGgIR0CZbdflIVdpdX2UKGgGR8CMfoV4X40uaAdLyGgIR0CZbx8brC3xdX2UKGgGR8CIQ5fx+a0AaAdLyGgIR0CZcH5mAbyZdX2UKGgGR8CH7gCIUJv6aAdLyGgIR0CZcd18LKFJdX2UKGgGR8CMqbwEyLydaAdLyGgIR0CZdP0Q9RrKdX2UKGgGR8CL/A4SYgJUaAdLyGgIR0CZdfQ40dildX2UKGgGR8CJlhyrgflqaAdLyGgIR0CZdvFnZkCndX2UKGgGR8CEH/vrGBFvaAdLyGgIR0CZd+vQWvbHdX2UKGgGR8CHlW5MDfWMaAdLyGgIR0CZeOdSVGCqdX2UKGgGR8CKtNqOcUdraAdLyGgIR0CZew5sj3VTdX2UKGgGR8CIhpS619fDaAdLyGgIR0CZfAHFxXGPdX2UKGgGR8CBsha7EpAlaAdLyGgIR0CZfQJeVs1sdX2UKGgGR8CQTcO7QLNOaAdLyGgIR0CZffbr1M/RdX2UKGgGR8CPjADSw4bTaAdLyGgIR0CZfviuuA7QdX2UKGgGR8CMUkPT5O8DaAdLyGgIR0CZgS1F6RhddX2UKGgGR8CQ0unV5KODaAdLyGgIR0CZgil9BrvcdX2UKGgGR8CL8FpRoAXEaAdLyGgIR0CZgx7HQyAQdX2UKGgGR8CIMSFB6a9caAdLyGgIR0CZhB12q1gIdX2UKGgGR8CLga1YQrc1aAdLyGgIR0CZhSNo8IRidX2UKGgGR8CJNxsGgSOBaAdLyGgIR0CZhh2W6bvxdX2UKGgGR8CMfhqGDcubaAdLyGgIR0CZiEqqfe1sdX2UKGgGR8CH6tLpRoAXaAdLyGgIR0CZiUAUcn3MdX2UKGgGR8CEVg384xUOaAdLyGgIR0CZii6y0KJEdX2UKGgGR8CEo831jAi3aAdLyGgIR0CZix2Q4jrzdX2UKGgGR8CKBjqFh5PeaAdLyGgIR0CZjBFfAsTWdX2UKGgGR8CNnRr8BMi9aAdLyGgIR0CZjlTpgTh6dX2UKGgGR8CKnUef7JnyaAdLyGgIR0CZj1Dq4YrKdX2UKGgGR8CL7fulXRw7aAdLyGgIR0CZkFBw++uedX2UKGgGR8CNGxkf9xZMaAdLyGgIR0CZkVXgLqlhdX2UKGgGR8CK2MtHQQcxaAdLyGgIR0CZklvovBacdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVrQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -8.]", "high": "[1. 1. 8.]", "low_repr": "[-1. -1. -8.]", "high_repr": "[1. 1. 8.]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAAMCUaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAAECUaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True]", "bounded_above": "[ True]", "_shape": [1], "low": "[-2.]", "high": "[2.]", "low_repr": "-2.0", "high_repr": "2.0", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (466 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -868.9647917, "std_reward": 94.96148636651374, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-05T10:27:05.695680"}