update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- super_glue
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: '20230826083203'
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# 20230826083203
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2932
|
22 |
+
- Accuracy: 0.6
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 11
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 80.0
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| No log | 1.0 | 25 | 0.5569 | 0.62 |
|
54 |
+
| No log | 2.0 | 50 | 0.3272 | 0.4 |
|
55 |
+
| No log | 3.0 | 75 | 0.2999 | 0.48 |
|
56 |
+
| No log | 4.0 | 100 | 0.3037 | 0.58 |
|
57 |
+
| No log | 5.0 | 125 | 0.3092 | 0.39 |
|
58 |
+
| No log | 6.0 | 150 | 0.3147 | 0.37 |
|
59 |
+
| No log | 7.0 | 175 | 0.2872 | 0.61 |
|
60 |
+
| No log | 8.0 | 200 | 0.2897 | 0.68 |
|
61 |
+
| No log | 9.0 | 225 | 0.2950 | 0.41 |
|
62 |
+
| No log | 10.0 | 250 | 0.2779 | 0.63 |
|
63 |
+
| No log | 11.0 | 275 | 0.2977 | 0.41 |
|
64 |
+
| No log | 12.0 | 300 | 0.2909 | 0.59 |
|
65 |
+
| No log | 13.0 | 325 | 0.2940 | 0.49 |
|
66 |
+
| No log | 14.0 | 350 | 0.2929 | 0.49 |
|
67 |
+
| No log | 15.0 | 375 | 0.2948 | 0.49 |
|
68 |
+
| No log | 16.0 | 400 | 0.2935 | 0.57 |
|
69 |
+
| No log | 17.0 | 425 | 0.2949 | 0.43 |
|
70 |
+
| No log | 18.0 | 450 | 0.2925 | 0.59 |
|
71 |
+
| No log | 19.0 | 475 | 0.2927 | 0.57 |
|
72 |
+
| 1.2287 | 20.0 | 500 | 0.2934 | 0.58 |
|
73 |
+
| 1.2287 | 21.0 | 525 | 0.2947 | 0.44 |
|
74 |
+
| 1.2287 | 22.0 | 550 | 0.2934 | 0.6 |
|
75 |
+
| 1.2287 | 23.0 | 575 | 0.2930 | 0.6 |
|
76 |
+
| 1.2287 | 24.0 | 600 | 0.2944 | 0.4 |
|
77 |
+
| 1.2287 | 25.0 | 625 | 0.2970 | 0.39 |
|
78 |
+
| 1.2287 | 26.0 | 650 | 0.2949 | 0.39 |
|
79 |
+
| 1.2287 | 27.0 | 675 | 0.2942 | 0.43 |
|
80 |
+
| 1.2287 | 28.0 | 700 | 0.2940 | 0.43 |
|
81 |
+
| 1.2287 | 29.0 | 725 | 0.2933 | 0.58 |
|
82 |
+
| 1.2287 | 30.0 | 750 | 0.2930 | 0.62 |
|
83 |
+
| 1.2287 | 31.0 | 775 | 0.2934 | 0.6 |
|
84 |
+
| 1.2287 | 32.0 | 800 | 0.2934 | 0.57 |
|
85 |
+
| 1.2287 | 33.0 | 825 | 0.2932 | 0.54 |
|
86 |
+
| 1.2287 | 34.0 | 850 | 0.2921 | 0.54 |
|
87 |
+
| 1.2287 | 35.0 | 875 | 0.2950 | 0.44 |
|
88 |
+
| 1.2287 | 36.0 | 900 | 0.2944 | 0.41 |
|
89 |
+
| 1.2287 | 37.0 | 925 | 0.2941 | 0.43 |
|
90 |
+
| 1.2287 | 38.0 | 950 | 0.2930 | 0.55 |
|
91 |
+
| 1.2287 | 39.0 | 975 | 0.2932 | 0.57 |
|
92 |
+
| 0.8805 | 40.0 | 1000 | 0.2923 | 0.57 |
|
93 |
+
| 0.8805 | 41.0 | 1025 | 0.2932 | 0.61 |
|
94 |
+
| 0.8805 | 42.0 | 1050 | 0.2936 | 0.46 |
|
95 |
+
| 0.8805 | 43.0 | 1075 | 0.2924 | 0.55 |
|
96 |
+
| 0.8805 | 44.0 | 1100 | 0.2937 | 0.44 |
|
97 |
+
| 0.8805 | 45.0 | 1125 | 0.2927 | 0.55 |
|
98 |
+
| 0.8805 | 46.0 | 1150 | 0.2923 | 0.56 |
|
99 |
+
| 0.8805 | 47.0 | 1175 | 0.2930 | 0.6 |
|
100 |
+
| 0.8805 | 48.0 | 1200 | 0.2936 | 0.43 |
|
101 |
+
| 0.8805 | 49.0 | 1225 | 0.2935 | 0.56 |
|
102 |
+
| 0.8805 | 50.0 | 1250 | 0.2937 | 0.46 |
|
103 |
+
| 0.8805 | 51.0 | 1275 | 0.2929 | 0.59 |
|
104 |
+
| 0.8805 | 52.0 | 1300 | 0.2932 | 0.55 |
|
105 |
+
| 0.8805 | 53.0 | 1325 | 0.2940 | 0.48 |
|
106 |
+
| 0.8805 | 54.0 | 1350 | 0.2933 | 0.53 |
|
107 |
+
| 0.8805 | 55.0 | 1375 | 0.2934 | 0.55 |
|
108 |
+
| 0.8805 | 56.0 | 1400 | 0.2936 | 0.49 |
|
109 |
+
| 0.8805 | 57.0 | 1425 | 0.2928 | 0.59 |
|
110 |
+
| 0.8805 | 58.0 | 1450 | 0.2927 | 0.53 |
|
111 |
+
| 0.8805 | 59.0 | 1475 | 0.2930 | 0.6 |
|
112 |
+
| 0.6612 | 60.0 | 1500 | 0.2936 | 0.47 |
|
113 |
+
| 0.6612 | 61.0 | 1525 | 0.2933 | 0.53 |
|
114 |
+
| 0.6612 | 62.0 | 1550 | 0.2932 | 0.62 |
|
115 |
+
| 0.6612 | 63.0 | 1575 | 0.2937 | 0.41 |
|
116 |
+
| 0.6612 | 64.0 | 1600 | 0.2932 | 0.54 |
|
117 |
+
| 0.6612 | 65.0 | 1625 | 0.2940 | 0.42 |
|
118 |
+
| 0.6612 | 66.0 | 1650 | 0.2931 | 0.56 |
|
119 |
+
| 0.6612 | 67.0 | 1675 | 0.2937 | 0.36 |
|
120 |
+
| 0.6612 | 68.0 | 1700 | 0.2930 | 0.63 |
|
121 |
+
| 0.6612 | 69.0 | 1725 | 0.2934 | 0.63 |
|
122 |
+
| 0.6612 | 70.0 | 1750 | 0.2937 | 0.36 |
|
123 |
+
| 0.6612 | 71.0 | 1775 | 0.2930 | 0.63 |
|
124 |
+
| 0.6612 | 72.0 | 1800 | 0.2932 | 0.63 |
|
125 |
+
| 0.6612 | 73.0 | 1825 | 0.2930 | 0.61 |
|
126 |
+
| 0.6612 | 74.0 | 1850 | 0.2932 | 0.53 |
|
127 |
+
| 0.6612 | 75.0 | 1875 | 0.2932 | 0.58 |
|
128 |
+
| 0.6612 | 76.0 | 1900 | 0.2935 | 0.53 |
|
129 |
+
| 0.6612 | 77.0 | 1925 | 0.2931 | 0.62 |
|
130 |
+
| 0.6612 | 78.0 | 1950 | 0.2933 | 0.54 |
|
131 |
+
| 0.6612 | 79.0 | 1975 | 0.2932 | 0.61 |
|
132 |
+
| 0.5295 | 80.0 | 2000 | 0.2932 | 0.6 |
|
133 |
+
|
134 |
+
|
135 |
+
### Framework versions
|
136 |
+
|
137 |
+
- Transformers 4.26.1
|
138 |
+
- Pytorch 2.0.1+cu118
|
139 |
+
- Datasets 2.12.0
|
140 |
+
- Tokenizers 0.13.3
|