dkqjrm commited on
Commit
640a065
1 Parent(s): 23010f7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +140 -0
README.md ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - super_glue
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: '20230826083203'
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # 20230826083203
18
+
19
+ This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2932
22
+ - Accuracy: 0.6
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.05
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 8
44
+ - seed: 11
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 80.0
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | No log | 1.0 | 25 | 0.5569 | 0.62 |
54
+ | No log | 2.0 | 50 | 0.3272 | 0.4 |
55
+ | No log | 3.0 | 75 | 0.2999 | 0.48 |
56
+ | No log | 4.0 | 100 | 0.3037 | 0.58 |
57
+ | No log | 5.0 | 125 | 0.3092 | 0.39 |
58
+ | No log | 6.0 | 150 | 0.3147 | 0.37 |
59
+ | No log | 7.0 | 175 | 0.2872 | 0.61 |
60
+ | No log | 8.0 | 200 | 0.2897 | 0.68 |
61
+ | No log | 9.0 | 225 | 0.2950 | 0.41 |
62
+ | No log | 10.0 | 250 | 0.2779 | 0.63 |
63
+ | No log | 11.0 | 275 | 0.2977 | 0.41 |
64
+ | No log | 12.0 | 300 | 0.2909 | 0.59 |
65
+ | No log | 13.0 | 325 | 0.2940 | 0.49 |
66
+ | No log | 14.0 | 350 | 0.2929 | 0.49 |
67
+ | No log | 15.0 | 375 | 0.2948 | 0.49 |
68
+ | No log | 16.0 | 400 | 0.2935 | 0.57 |
69
+ | No log | 17.0 | 425 | 0.2949 | 0.43 |
70
+ | No log | 18.0 | 450 | 0.2925 | 0.59 |
71
+ | No log | 19.0 | 475 | 0.2927 | 0.57 |
72
+ | 1.2287 | 20.0 | 500 | 0.2934 | 0.58 |
73
+ | 1.2287 | 21.0 | 525 | 0.2947 | 0.44 |
74
+ | 1.2287 | 22.0 | 550 | 0.2934 | 0.6 |
75
+ | 1.2287 | 23.0 | 575 | 0.2930 | 0.6 |
76
+ | 1.2287 | 24.0 | 600 | 0.2944 | 0.4 |
77
+ | 1.2287 | 25.0 | 625 | 0.2970 | 0.39 |
78
+ | 1.2287 | 26.0 | 650 | 0.2949 | 0.39 |
79
+ | 1.2287 | 27.0 | 675 | 0.2942 | 0.43 |
80
+ | 1.2287 | 28.0 | 700 | 0.2940 | 0.43 |
81
+ | 1.2287 | 29.0 | 725 | 0.2933 | 0.58 |
82
+ | 1.2287 | 30.0 | 750 | 0.2930 | 0.62 |
83
+ | 1.2287 | 31.0 | 775 | 0.2934 | 0.6 |
84
+ | 1.2287 | 32.0 | 800 | 0.2934 | 0.57 |
85
+ | 1.2287 | 33.0 | 825 | 0.2932 | 0.54 |
86
+ | 1.2287 | 34.0 | 850 | 0.2921 | 0.54 |
87
+ | 1.2287 | 35.0 | 875 | 0.2950 | 0.44 |
88
+ | 1.2287 | 36.0 | 900 | 0.2944 | 0.41 |
89
+ | 1.2287 | 37.0 | 925 | 0.2941 | 0.43 |
90
+ | 1.2287 | 38.0 | 950 | 0.2930 | 0.55 |
91
+ | 1.2287 | 39.0 | 975 | 0.2932 | 0.57 |
92
+ | 0.8805 | 40.0 | 1000 | 0.2923 | 0.57 |
93
+ | 0.8805 | 41.0 | 1025 | 0.2932 | 0.61 |
94
+ | 0.8805 | 42.0 | 1050 | 0.2936 | 0.46 |
95
+ | 0.8805 | 43.0 | 1075 | 0.2924 | 0.55 |
96
+ | 0.8805 | 44.0 | 1100 | 0.2937 | 0.44 |
97
+ | 0.8805 | 45.0 | 1125 | 0.2927 | 0.55 |
98
+ | 0.8805 | 46.0 | 1150 | 0.2923 | 0.56 |
99
+ | 0.8805 | 47.0 | 1175 | 0.2930 | 0.6 |
100
+ | 0.8805 | 48.0 | 1200 | 0.2936 | 0.43 |
101
+ | 0.8805 | 49.0 | 1225 | 0.2935 | 0.56 |
102
+ | 0.8805 | 50.0 | 1250 | 0.2937 | 0.46 |
103
+ | 0.8805 | 51.0 | 1275 | 0.2929 | 0.59 |
104
+ | 0.8805 | 52.0 | 1300 | 0.2932 | 0.55 |
105
+ | 0.8805 | 53.0 | 1325 | 0.2940 | 0.48 |
106
+ | 0.8805 | 54.0 | 1350 | 0.2933 | 0.53 |
107
+ | 0.8805 | 55.0 | 1375 | 0.2934 | 0.55 |
108
+ | 0.8805 | 56.0 | 1400 | 0.2936 | 0.49 |
109
+ | 0.8805 | 57.0 | 1425 | 0.2928 | 0.59 |
110
+ | 0.8805 | 58.0 | 1450 | 0.2927 | 0.53 |
111
+ | 0.8805 | 59.0 | 1475 | 0.2930 | 0.6 |
112
+ | 0.6612 | 60.0 | 1500 | 0.2936 | 0.47 |
113
+ | 0.6612 | 61.0 | 1525 | 0.2933 | 0.53 |
114
+ | 0.6612 | 62.0 | 1550 | 0.2932 | 0.62 |
115
+ | 0.6612 | 63.0 | 1575 | 0.2937 | 0.41 |
116
+ | 0.6612 | 64.0 | 1600 | 0.2932 | 0.54 |
117
+ | 0.6612 | 65.0 | 1625 | 0.2940 | 0.42 |
118
+ | 0.6612 | 66.0 | 1650 | 0.2931 | 0.56 |
119
+ | 0.6612 | 67.0 | 1675 | 0.2937 | 0.36 |
120
+ | 0.6612 | 68.0 | 1700 | 0.2930 | 0.63 |
121
+ | 0.6612 | 69.0 | 1725 | 0.2934 | 0.63 |
122
+ | 0.6612 | 70.0 | 1750 | 0.2937 | 0.36 |
123
+ | 0.6612 | 71.0 | 1775 | 0.2930 | 0.63 |
124
+ | 0.6612 | 72.0 | 1800 | 0.2932 | 0.63 |
125
+ | 0.6612 | 73.0 | 1825 | 0.2930 | 0.61 |
126
+ | 0.6612 | 74.0 | 1850 | 0.2932 | 0.53 |
127
+ | 0.6612 | 75.0 | 1875 | 0.2932 | 0.58 |
128
+ | 0.6612 | 76.0 | 1900 | 0.2935 | 0.53 |
129
+ | 0.6612 | 77.0 | 1925 | 0.2931 | 0.62 |
130
+ | 0.6612 | 78.0 | 1950 | 0.2933 | 0.54 |
131
+ | 0.6612 | 79.0 | 1975 | 0.2932 | 0.61 |
132
+ | 0.5295 | 80.0 | 2000 | 0.2932 | 0.6 |
133
+
134
+
135
+ ### Framework versions
136
+
137
+ - Transformers 4.26.1
138
+ - Pytorch 2.0.1+cu118
139
+ - Datasets 2.12.0
140
+ - Tokenizers 0.13.3