update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- super_glue
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: '20230824164037'
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# 20230824164037
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.7104
|
22 |
+
- Accuracy: 0.7617
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.005
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 11
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 80.0
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
53 |
+
| No log | 1.0 | 156 | 0.8540 | 0.5307 |
|
54 |
+
| No log | 2.0 | 312 | 0.6894 | 0.4838 |
|
55 |
+
| No log | 3.0 | 468 | 1.2065 | 0.4729 |
|
56 |
+
| 1.0004 | 4.0 | 624 | 0.6386 | 0.5487 |
|
57 |
+
| 1.0004 | 5.0 | 780 | 0.6979 | 0.5199 |
|
58 |
+
| 1.0004 | 6.0 | 936 | 0.6102 | 0.6173 |
|
59 |
+
| 0.8189 | 7.0 | 1092 | 0.9162 | 0.5848 |
|
60 |
+
| 0.8189 | 8.0 | 1248 | 0.7055 | 0.6282 |
|
61 |
+
| 0.8189 | 9.0 | 1404 | 0.5689 | 0.7004 |
|
62 |
+
| 0.7207 | 10.0 | 1560 | 1.0166 | 0.6282 |
|
63 |
+
| 0.7207 | 11.0 | 1716 | 0.8185 | 0.4946 |
|
64 |
+
| 0.7207 | 12.0 | 1872 | 0.5053 | 0.7148 |
|
65 |
+
| 0.6822 | 13.0 | 2028 | 0.5296 | 0.7184 |
|
66 |
+
| 0.6822 | 14.0 | 2184 | 0.6259 | 0.7040 |
|
67 |
+
| 0.6822 | 15.0 | 2340 | 0.9773 | 0.6426 |
|
68 |
+
| 0.6822 | 16.0 | 2496 | 0.7401 | 0.6462 |
|
69 |
+
| 0.6238 | 17.0 | 2652 | 0.4929 | 0.7148 |
|
70 |
+
| 0.6238 | 18.0 | 2808 | 0.5547 | 0.7256 |
|
71 |
+
| 0.6238 | 19.0 | 2964 | 0.5692 | 0.7220 |
|
72 |
+
| 0.5327 | 20.0 | 3120 | 0.9119 | 0.6498 |
|
73 |
+
| 0.5327 | 21.0 | 3276 | 0.6083 | 0.7004 |
|
74 |
+
| 0.5327 | 22.0 | 3432 | 0.5836 | 0.7112 |
|
75 |
+
| 0.4818 | 23.0 | 3588 | 0.5820 | 0.7292 |
|
76 |
+
| 0.4818 | 24.0 | 3744 | 0.5506 | 0.7292 |
|
77 |
+
| 0.4818 | 25.0 | 3900 | 0.6027 | 0.7256 |
|
78 |
+
| 0.4199 | 26.0 | 4056 | 0.5265 | 0.7437 |
|
79 |
+
| 0.4199 | 27.0 | 4212 | 0.6094 | 0.7076 |
|
80 |
+
| 0.4199 | 28.0 | 4368 | 0.6170 | 0.7220 |
|
81 |
+
| 0.4001 | 29.0 | 4524 | 0.5932 | 0.7329 |
|
82 |
+
| 0.4001 | 30.0 | 4680 | 0.6954 | 0.7220 |
|
83 |
+
| 0.4001 | 31.0 | 4836 | 0.6963 | 0.7437 |
|
84 |
+
| 0.4001 | 32.0 | 4992 | 0.6431 | 0.7545 |
|
85 |
+
| 0.3272 | 33.0 | 5148 | 0.9597 | 0.7040 |
|
86 |
+
| 0.3272 | 34.0 | 5304 | 0.6982 | 0.7365 |
|
87 |
+
| 0.3272 | 35.0 | 5460 | 0.6270 | 0.7437 |
|
88 |
+
| 0.2947 | 36.0 | 5616 | 1.0674 | 0.7004 |
|
89 |
+
| 0.2947 | 37.0 | 5772 | 0.8835 | 0.7256 |
|
90 |
+
| 0.2947 | 38.0 | 5928 | 0.9769 | 0.6859 |
|
91 |
+
| 0.266 | 39.0 | 6084 | 0.6855 | 0.7581 |
|
92 |
+
| 0.266 | 40.0 | 6240 | 0.7246 | 0.7509 |
|
93 |
+
| 0.266 | 41.0 | 6396 | 0.6901 | 0.7690 |
|
94 |
+
| 0.2254 | 42.0 | 6552 | 0.7170 | 0.7509 |
|
95 |
+
| 0.2254 | 43.0 | 6708 | 0.7532 | 0.7473 |
|
96 |
+
| 0.2254 | 44.0 | 6864 | 0.7347 | 0.7617 |
|
97 |
+
| 0.2188 | 45.0 | 7020 | 0.6478 | 0.7509 |
|
98 |
+
| 0.2188 | 46.0 | 7176 | 0.7903 | 0.7545 |
|
99 |
+
| 0.2188 | 47.0 | 7332 | 0.9367 | 0.7220 |
|
100 |
+
| 0.2188 | 48.0 | 7488 | 0.8417 | 0.7690 |
|
101 |
+
| 0.2166 | 49.0 | 7644 | 0.8226 | 0.7617 |
|
102 |
+
| 0.2166 | 50.0 | 7800 | 0.6278 | 0.7545 |
|
103 |
+
| 0.2166 | 51.0 | 7956 | 0.7471 | 0.7473 |
|
104 |
+
| 0.1828 | 52.0 | 8112 | 0.7728 | 0.7617 |
|
105 |
+
| 0.1828 | 53.0 | 8268 | 0.7733 | 0.7690 |
|
106 |
+
| 0.1828 | 54.0 | 8424 | 0.7554 | 0.7581 |
|
107 |
+
| 0.163 | 55.0 | 8580 | 0.8025 | 0.7653 |
|
108 |
+
| 0.163 | 56.0 | 8736 | 0.8769 | 0.7617 |
|
109 |
+
| 0.163 | 57.0 | 8892 | 0.6569 | 0.7473 |
|
110 |
+
| 0.1563 | 58.0 | 9048 | 0.7166 | 0.7653 |
|
111 |
+
| 0.1563 | 59.0 | 9204 | 0.8688 | 0.7617 |
|
112 |
+
| 0.1563 | 60.0 | 9360 | 0.7254 | 0.7617 |
|
113 |
+
| 0.1423 | 61.0 | 9516 | 0.8286 | 0.7545 |
|
114 |
+
| 0.1423 | 62.0 | 9672 | 0.7656 | 0.7545 |
|
115 |
+
| 0.1423 | 63.0 | 9828 | 0.8362 | 0.7617 |
|
116 |
+
| 0.1423 | 64.0 | 9984 | 0.7287 | 0.7617 |
|
117 |
+
| 0.1355 | 65.0 | 10140 | 0.8451 | 0.7581 |
|
118 |
+
| 0.1355 | 66.0 | 10296 | 0.6854 | 0.7617 |
|
119 |
+
| 0.1355 | 67.0 | 10452 | 0.7272 | 0.7581 |
|
120 |
+
| 0.1321 | 68.0 | 10608 | 0.6530 | 0.7617 |
|
121 |
+
| 0.1321 | 69.0 | 10764 | 0.8535 | 0.7653 |
|
122 |
+
| 0.1321 | 70.0 | 10920 | 0.7803 | 0.7653 |
|
123 |
+
| 0.1217 | 71.0 | 11076 | 0.7409 | 0.7617 |
|
124 |
+
| 0.1217 | 72.0 | 11232 | 0.7044 | 0.7617 |
|
125 |
+
| 0.1217 | 73.0 | 11388 | 0.6501 | 0.7653 |
|
126 |
+
| 0.1224 | 74.0 | 11544 | 0.7102 | 0.7617 |
|
127 |
+
| 0.1224 | 75.0 | 11700 | 0.7050 | 0.7617 |
|
128 |
+
| 0.1224 | 76.0 | 11856 | 0.7103 | 0.7617 |
|
129 |
+
| 0.1173 | 77.0 | 12012 | 0.6821 | 0.7617 |
|
130 |
+
| 0.1173 | 78.0 | 12168 | 0.7196 | 0.7617 |
|
131 |
+
| 0.1173 | 79.0 | 12324 | 0.7048 | 0.7617 |
|
132 |
+
| 0.1173 | 80.0 | 12480 | 0.7104 | 0.7617 |
|
133 |
+
|
134 |
+
|
135 |
+
### Framework versions
|
136 |
+
|
137 |
+
- Transformers 4.26.1
|
138 |
+
- Pytorch 2.0.1+cu118
|
139 |
+
- Datasets 2.12.0
|
140 |
+
- Tokenizers 0.13.3
|