Dionyssos's picture
fx PATH
0572d9a
raw
history blame
15.9 kB
# -*- coding: utf-8 -*-
import numpy as np
import soundfile
import audresample
import text_utils
import msinference
import re
import srt
import subprocess
import cv2
import markdown
import json
from pathlib import Path
from types import SimpleNamespace
from flask import Flask, request, send_from_directory
from flask_cors import CORS
from moviepy.editor import *
from audiocraft.audiogen import AudioGen, audio_write
sound_generator = AudioGen.get_pretrained('facebook/audiogen-medium')
sound_generator.set_generation_params(duration=6)
CACHE_DIR = 'flask_cache/'
Path(CACHE_DIR).mkdir(parents=True, exist_ok=True)
# SSH AGENT
# eval $(ssh-agent -s)
# ssh-add ~/.ssh/id_ed25519_github2024
#
# git remote set-url origin git@github.com:audeering/shift
# ==
def _shift(x):
n = x.shape[0]
i = np.random.randint(.24 * n, max(1, .74 * n)) # high should be above >= 0
x = np.roll(x, i)
# fade_in = .5 + .5 * np.tanh(4*(np.linspace(-10, 10, x.shape[0]) + 9.4))
# x = x * fade_in
return x
def overlay(x, sound_background=None):
if sound_background is not None:
sound_background = sound_background.detach().cpu().numpy()[0, :]
len_speech = len(x)
if len_speech > len(sound_background):
n_repeat = len_speech // len(sound_background) + 1
replica = [sound_background] * n_repeat
replica = [_shift(_) for _ in replica]
sound_background = np.concatenate(replica)
print(f'\nSOUND BACKGROUND SHAPE\n{sound_background.shape=}\n{x.shape=}\n- - - -')
x = .74 * x + .26 * sound_background[:len_speech]
return x
def tts_multi_sentence(precomputed_style_vector=None,
text=None,
voice=None,
scene=None):
'''create 24kHZ np.array with tts
precomputed_style_vector : required if en_US or en_UK in voice, so
to perform affective TTS.
text : string
voice : string or None (falls to styleTTS)
scene : 'A castle in far away lands' -> if passed will generate background sound scene
'''
# Generate sound scene - up sample to 24KHz
if scene is not None:
sound_background = sound_generator.generate([scene])[0]
sound_background = audio_write(None,
sound_background.cpu(),
24000, # sound_generator.sample_rate,
strategy="loudness",
loudness_compressor=True)
else:
sound_background = None
# StyleTTS2
if ('en_US/' in voice) or ('en_UK/' in voice) or (voice is None):
assert precomputed_style_vector is not None, 'For affective TTS, style vector is needed.'
x = []
for _sentence in text:
x.append(msinference.inference(_sentence,
precomputed_style_vector,
alpha=0.3,
beta=0.7,
diffusion_steps=7,
embedding_scale=1))
x = np.concatenate(x)
return overlay(x, sound_background)
# Fallback - Mimic-3
text_utils.store_ssml(text=text, voice=voice) # Text has to be list of single sentences
ps = subprocess.Popen(f'cat _tmp_ssml.txt | mimic3 --ssml > _tmp.wav', shell=True)
ps.wait()
x, fs = soundfile.read('_tmp.wav')
x = audresample.resample(x.astype(np.float32), 24000, fs)[0, :] # reshapes (64,) -> (1,64)
return overlay(x, sound_background)
# voices = {}
# import phonemizer
# global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
app = Flask(__name__)
cors = CORS(app)
@app.route("/")
def index():
with open('README.md', 'r') as f:
return markdown.markdown(f.read())
@app.route("/", methods=['GET', 'POST', 'PUT'])
def serve_wav():
# https://stackoverflow.com/questions/13522137/in-flask-convert-form-post-
# object-into-a-representation-suitable-for-mongodb
r = request.form.to_dict(flat=False)
# Physically Save Client Files
for filename, obj in request.files.items():
obj.save(f'{CACHE_DIR}{filename.replace("/","")}')
print('Saved all files on Server Side\n\n')
args = SimpleNamespace(text=None if r.get('text') is None else CACHE_DIR + r.get('text')[0].replace("/",""),
video=None if r.get('video') is None else CACHE_DIR + r.get('video')[0].replace("/",""),
image=None if r.get('image') is None else CACHE_DIR + r.get('image')[0].replace("/",""),
voice=r.get('voice')[0],
native=None if r.get('native') is None else CACHE_DIR + r.get('native')[0].replace("/",""),
affective = r.get('affective')[0],
scene=r.get('scene')[0]
)
# print('\n==RECOMPOSED as \n',request.data,request.form,'\n==')
print(args, 'ENTER Script')
do_video_dub = True if args.text.endswith('.srt') else False
SILENT_VIDEO = '_silent_video.mp4'
AUDIO_TRACK = '_audio_track.wav'
if do_video_dub:
print('==\nFound .srt : {args.txt}, thus Video should be given as well\n\n')
with open(args.text, "r") as f:
s = f.read()
text = [[j.content, j.start.total_seconds(), j.end.total_seconds()] for j in srt.parse(s)]
assert args.video is not None
native_audio_file = '_tmp.wav'
subprocess.call(
["ffmpeg",
"-y", # https://stackoverflow.com/questions/39788972/ffmpeg-overwrite-output-file-if-exists
"-i",
args.video,
"-f",
"mp3",
"-ar",
"24000", # "22050 for mimic3",
"-vn",
native_audio_file])
x_native, _ = soundfile.read(native_audio_file) # reads mp3
x_native = x_native[:, 0] # stereo
# ffmpeg -i Sandra\ Kotevska\,\ Painting\ Rose\ bush\,\ mixed\ media\,\ 2017.\ \[NMzC_036MtE\].mkv -f mp3 -ar 22050 -vn out44.wa
else:
with open(args.text, 'r') as f:
t = ''.join(f)
t = re.sub(' +', ' ', t) # delete spaces
text = text_utils.split_into_sentences(t) # split to short sentences (~200 phonemes max)
# ====STYLE VECTOR====
precomputed_style_vector = None
if args.native: # Voice Cloning
try:
precomputed_style_vector = msinference.compute_style(args.native)
except soundfile.LibsndfileError: # Fallback - internal voice
print('\n Could not voice clone audio:', args.native, 'fallback to video or Internal TTS voice.\n')
if do_video_dub: # Clone voice via Video
native_audio_file = args.video.replace('.', '').replace('/', '')
native_audio_file += '__native_audio_track.wav'
soundfile.write('tgt_spk.wav',
np.concatenate([
x_native[:int(4 * 24000)]], 0).astype(np.float32), 24000) # 27400?
precomputed_style_vector = msinference.compute_style('tgt_spk.wav')
# NOTE: style vector may be None
if precomputed_style_vector is None:
if 'en_US' in args.voice or 'en_UK' in args.voice:
_dir = '/' if args.affective else '_v2/'
precomputed_style_vector = msinference.compute_style(
'assets/wavs/style_vector' + _dir + args.voice.replace(
'/', '_').replace(
'#', '_').replace(
'cmu-arctic', 'cmu_arctic').replace(
'_low', '') + '.wav')
print('\n STYLE VECTOR \n', precomputed_style_vector.shape)
# ====SILENT VIDEO====
if args.video is not None:
# banner
frame_tts = np.zeros((104, 1920, 3), dtype=np.uint8)
font = cv2.FONT_HERSHEY_SIMPLEX
bottomLeftCornerOfText = (240, 74) # w,h
fontScale = 2
fontColor = (255, 255, 255)
thickness = 4
lineType = 2
cv2.putText(frame_tts, 'TTS',
bottomLeftCornerOfText,
font,
fontScale,
fontColor,
thickness,
lineType)
# cv2.imshow('i', frame_tts); cv2.waitKey(); cv2.destroyAllWindows()
# ====================================== NATIVE VOICE
frame_orig = np.zeros((104, 1920, 3), dtype=np.uint8)
font = cv2.FONT_HERSHEY_SIMPLEX
bottomLeftCornerOfText = (101, 74) # w,h
fontScale = 2
fontColor = (255, 255, 255)
thickness = 4
lineType = 1000
cv2.putText(frame_orig, 'ORIGINAL VOICE',
bottomLeftCornerOfText,
font,
fontScale,
fontColor,
thickness,
lineType)
# ====SILENT VIDEO EXTRACT====
# DONLOAD SRT from youtube
#
# yt-dlp --write-sub --sub-lang en --convert-subs "srt" https://www.youtube.com/watch?v=F1Ib7TAu7eg&list=PL4x2B6LSwFewdDvRnUTpBM7jkmpwouhPv&index=2
#
#
# .mkv ->.mp4 moviepy loads only .mp4
#
# ffmpeg -y -i Distaff\ \[qVonBgRXcWU\].mkv -c copy -c:a aac Distaff_qVonBgRXcWU.mp4
# video_file, srt_file = ['assets/Head_of_fortuna.mp4',
# 'assets/head_of_fortuna_en.srt']
#
video_file = args.video
vf = VideoFileClip(video_file)
try:
# inpaint banners if native voice
num = x_native.shape[0]
is_tts = .5 + .5 * np.tanh(4*(np.linspace(-10, 10, num) + 9.4)) # fade heaviside
def inpaint_banner(get_frame, t):
'''blend banner - (now plays) tts or native voic
'''
im = np.copy(get_frame(t))
ix = int(t * 24000)
if is_tts[ix] > .5: # mask is 1 thus tts else native
frame = frame_tts
else:
frame = frame_orig
h, w, _ = frame.shape
# im[-h:, -w:, :] = (.4 * im[-h:, -w:, :] + .6 * frame_orig).astype(np.uint8)
offset_h = 24
im[offset_h:h + offset_h, :w, :] = (.4 * im[offset_h:h + offset_h, :w, :]
+ .6 * frame).astype(np.uint8)
# im2 = np.concatenate([im, frame_tts], 0)
# cv2.imshow('t', im2); cv2.waitKey(); cv2.destroyAllWindows()
return im # np.concatenate([im, frane_ttts], 0)
except UnboundLocalError: # args.native == False
def inpaint_banner(get_frame, t):
im = np.copy(get_frame(t))
frame = frame_tts
h, w, _ = frame.shape
offset_h = 24
im[offset_h:h + offset_h, :w, :] = (.4 * im[offset_h:h+offset_h, :w, :]
+ .6 * frame).astype(np.uint8)
return im
vf = vf.fl(inpaint_banner)
vf.write_videofile(SILENT_VIDEO)
# ==== TTS .srt ====
if do_video_dub:
OUT_FILE = 'tmp.mp4' #args.out_file + '_video_dub.mp4'
subtitles = text
MAX_LEN = int(subtitles[-1][2] + 17) * 24000
# 17 extra seconds fail-safe for long-last-segment
print("TOTAL LEN SAMPLES ", MAX_LEN, '\n====================')
pieces = []
for k, (_text_, orig_start, orig_end) in enumerate(subtitles):
# PAUSES ?????????????????????????
pieces.append(tts_multi_sentence(text=[_text_],
precomputed_style_vector=precomputed_style_vector,
voice=args.voice,
scene=args.scene)
)
total = np.concatenate(pieces, 0)
# x = audresample.resample(x.astype(np.float32), 24000, 22050) # reshapes (64,) -> (1,64)
# PAD SHORTEST of TTS / NATIVE
if len(x_native) > len(total):
total = np.pad(total, (0, max(0, x_native.shape[0] - total.shape[0])))
else: # pad native to len of is_tts & total
x_native = np.pad(x_native, (0, max(0, total.shape[0] - x_native.shape[0])))
# print(total.shape, x_native.shape, 'PADDED TRACKS')
soundfile.write(AUDIO_TRACK,
# (is_tts * total + (1-is_tts) * x_native)[:, None],
(.64 * total + .27 * x_native)[:, None],
24000)
else: # Video from plain (.txt)
OUT_FILE = 'tmp.mp4'
x = tts_multi_sentence(text=text,
precomputed_style_vector=precomputed_style_vector,
voice=args.voice,
scene=args.scene)
soundfile.write(AUDIO_TRACK, x, 24000)
# IMAGE 2 SPEECH
if args.image is not None:
STATIC_FRAME = args.image # 'assets/image_from_T31.jpg'
OUT_FILE = 'tmp.mp4' #args.out_file + '_image_to_speech.mp4'
# SILENT CLIP
clip_silent = ImageClip(STATIC_FRAME).set_duration(5) # as long as the audio - TTS first
clip_silent.write_videofile(SILENT_VIDEO, fps=24)
x = tts_multi_sentence(text=text,
precomputed_style_vector=precomputed_style_vector,
voice=args.voice,
scene=args.scene
)
soundfile.write(AUDIO_TRACK, x, 24000)
if args.video or args.image:
# write final output video
subprocess.call(
["ffmpeg",
"-y",
"-i",
SILENT_VIDEO,
"-i",
AUDIO_TRACK,
"-c:v",
"copy",
"-map",
"0:v:0",
"-map",
" 1:a:0",
CACHE_DIR + OUT_FILE])
print(f'\noutput video is saved as {OUT_FILE}')
else:
# Fallback: No image nor video provided - do only tts
x = tts_multi_sentence(text=text,
precomputed_style_vector=precomputed_style_vector,
voice=args.voice,
scene=args.scene)
OUT_FILE = 'tmp.wav'
soundfile.write(CACHE_DIR + OUT_FILE, x, 24000)
# audios = [msinference.inference(text,
# msinference.compute_style(f'voices/{voice}.wav'),
# alpha=0.3, beta=0.7, diffusion_steps=7, embedding_scale=1)]
# # for t in [text]:
# output_buffer = io.BytesIO()
# write(output_buffer, 24000, np.concatenate(audios))
# response = Response(output_buffer.getvalue())
# response.headers["Content-Type"] = "audio/wav"
# https://stackoverflow.com/questions/67591467/
# flask-shows-typeerror-send-from-directory-missing-1-required-positional-argum
# send server's output as default file -> srv_result.xx
print(f'\n=SERVER saved as {OUT_FILE=}\n')
response = send_from_directory(CACHE_DIR, path=OUT_FILE)
response.headers['suffix-file-type'] = OUT_FILE
return response
if __name__ == "__main__":
app.run(host="0.0.0.0")