dk-isaka commited on
Commit
6f5404e
·
1 Parent(s): ed74594
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: LunarLander-v2
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 8.11 +/- 64.48
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **LunarLander-v2** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **LunarLander-v2** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f22ea5e11f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f22ea5e1280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f22ea5e1310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f22ea5e13a0>", "_build": "<function ActorCriticPolicy._build at 0x7f22ea5e1430>", "forward": "<function ActorCriticPolicy.forward at 0x7f22ea5e14c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f22ea5e1550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f22ea5e15e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f22ea5e1670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f22ea5e1700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f22ea5e1790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f22ea5e1820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f22ea5db600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678264462343000115, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2KXb49ABW9UBUbO0r51Dkh44M+wJxZugAAgD8AAIA/MEKXPn1wXT+1YkU8bZRgvpu/gL2mYII9AAAAAAAAAABt31U+GHm7PxURIz+P6WS+LK0jPhUIdT0AAAAAAAAAAM2TPL5ccXO8SKdtOzz7kDnEttg9IfuUugAAgD8AAIA/QL2Hvijlkbxq7Te7+kNmueDGAD64q1o6AACAPwAAgD9mchY9w1FQun3Y5bpER0G1eCPguUa1AjoAAIA/AACAP3OnrL2PWh+6ftMyuj4nT7XwznM7rXpUOQAAgD8AAIA/5jrRPcNNP7roje+6DfhFtdT/JTupQgw6AACAPwAAgD+a3d68EFgjP8Xfm73ajTq+Xs9XPTjYVz0AAAAAAAAAAB2NgT5OIgE/iJwFPdP9er7A0jk90t6QPAAAAAAAAAAAgCC7vXFNL7lpR0y6XEhqtS26yLtauHc5AACAPwAAgD8Aoh28jyJ4ut4vSboGSvS1AKd2OwA0ZTkAAIA/AACAP3PDvj1SQIi5LcKQOdCgf7nan466+nZiuAAAgD8AAIA/gMc7PY+eOLoqOWy6YmEGtTKsvbphf4Y5AACAPwAAgD/AyoO9jw5QugAWfrvpOc44jc2kOiJDBToAAIA/AACAPxO7GL4fe827EXGtvNKlEb0gQzI9Cpb2PQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICDpa1ZLAWkCUhpRSlIwBbJRN6AOMAXSUR0CFuMhFEy+IdX2UKGgGaAloD0MIMbQ6OUPOXkCUhpRSlGgVTegDaBZHQIW+sSAYpDx1fZQoaAZoCWgPQwj+17lpM9xdQJSGlFKUaBVN6ANoFkdAhb9v+XJHRXV9lChoBmgJaA9DCFU01v7O3FlAlIaUUpRoFU3oA2gWR0CF3Rie/YapdX2UKGgGaAloD0MIytx8I7ofTcCUhpRSlGgVTVcBaBZHQIYVeitaIN51fZQoaAZoCWgPQwj60AX1LZBdQJSGlFKUaBVN6ANoFkdAhiCIAGSpznV9lChoBmgJaA9DCPxTqkTZTlRAlIaUUpRoFU3oA2gWR0CGJvygf2bodX2UKGgGaAloD0MINLkYA+uGXECUhpRSlGgVTegDaBZHQIYrUahpQDV1fZQoaAZoCWgPQwjhzoWRXuJdQJSGlFKUaBVN6ANoFkdAhjMvb48EFHV9lChoBmgJaA9DCLiswmYAsWFAlIaUUpRoFU3oA2gWR0CGNxSwW3z+dX2UKGgGaAloD0MIYCFzZVCdUUCUhpRSlGgVTegDaBZHQIY6oF7laKV1fZQoaAZoCWgPQwh7n6pCg/9oQJSGlFKUaBVNkwJoFkdAhkPZ+YtxuXV9lChoBmgJaA9DCC9P54pSjELAlIaUUpRoFU0yAWgWR0CGR+4MnZ00dX2UKGgGaAloD0MItK88SE82WECUhpRSlGgVTegDaBZHQIZOviJfpll1fZQoaAZoCWgPQwgBo8ubw7tEQJSGlFKUaBVN6ANoFkdAhlfGGmDUVnV9lChoBmgJaA9DCAjm6PF7hV9AlIaUUpRoFU3oA2gWR0CGWC5VfeDWdX2UKGgGaAloD0MIqKePwB94QcCUhpRSlGgVTQcBaBZHQIZdcU/OdG11fZQoaAZoCWgPQwjUYBqGj/A/QJSGlFKUaBVN6ANoFkdAhl4xBmf5DnV9lChoBmgJaA9DCO19qgoNpADAlIaUUpRoFU1tAWgWR0CGZIby6MBIdX2UKGgGaAloD0MIfzLGh9kpX0CUhpRSlGgVTegDaBZHQIZnVXaJyhl1fZQoaAZoCWgPQwjAsWfPZfxTQJSGlFKUaBVN6ANoFkdAhmxhkAggYHV9lChoBmgJaA9DCAsqqn6ljFxAlIaUUpRoFU3oA2gWR0CGcq7z06HTdX2UKGgGaAloD0MI3gTfNH15X0CUhpRSlGgVTegDaBZHQIaPBqGlANZ1fZQoaAZoCWgPQwiVfsLZraVFwJSGlFKUaBVNdgFoFkdAht92SU1Q7HV9lChoBmgJaA9DCOOL9nghyVhAlIaUUpRoFU3oA2gWR0CG5fCJGe+VdX2UKGgGaAloD0MIeGFrtvINXUCUhpRSlGgVTegDaBZHQIbrAaNuLrJ1fZQoaAZoCWgPQwhy3ZTyWlhXQJSGlFKUaBVN6ANoFkdAhu5mD15B1XV9lChoBmgJaA9DCLA8SE+RLl5AlIaUUpRoFU3oA2gWR0CG9yTpPhybdX2UKGgGaAloD0MI++WTFcM2YUCUhpRSlGgVTegDaBZHQIcA6kKu0Tl1fZQoaAZoCWgPQwj4p1SJstpXQJSGlFKUaBVN6ANoFkdAhwQsdLg4wXV9lChoBmgJaA9DCNyeILHd8FlAlIaUUpRoFU3oA2gWR0CHCyVoHs1LdX2UKGgGaAloD0MIa9jviXUXYkCUhpRSlGgVTegDaBZHQIcVChrWRRx1fZQoaAZoCWgPQwjsMvynGxxbQJSGlFKUaBVN6ANoFkdAhxWLqMWGh3V9lChoBmgJaA9DCLb0aKonsx1AlIaUUpRoFU0JAWgWR0CHGaCI1tO3dX2UKGgGaAloD0MIpki+EkgTXECUhpRSlGgVTegDaBZHQIccmnQ6ZIB1fZQoaAZoCWgPQwjSjbCoiLJWQJSGlFKUaBVN6ANoFkdAhx2FkpZwGXV9lChoBmgJaA9DCIPAyqFFkVdAlIaUUpRoFU3oA2gWR0CHJXRHf/FSdX2UKGgGaAloD0MImUuqtpuOU0CUhpRSlGgVTegDaBZHQIco88kleGB1fZQoaAZoCWgPQwiUv3tHjTtJQJSGlFKUaBVN6ANoFkdAhy8k9dNWVHV9lChoBmgJaA9DCLsNar+1Ix3AlIaUUpRoFU0AAWgWR0CHMMyC4BmxdX2UKGgGaAloD0MI2EroLoknOcCUhpRSlGgVTUUCaBZHQIc2R44ZMtd1fZQoaAZoCWgPQwg3b5wU5vtMQJSGlFKUaBVN6ANoFkdAh1EnQ6ZH/nV9lChoBmgJaA9DCFg7inPU5T/AlIaUUpRoFU3KAWgWR0CHXIRujynUdX2UKGgGaAloD0MIVWzM64ijXkCUhpRSlGgVTegDaBZHQIehPmig00p1fZQoaAZoCWgPQwhBRdWvdBVUQJSGlFKUaBVN6ANoFkdAh7D274BV/HV9lChoBmgJaA9DCJlIaTaPal1AlIaUUpRoFU3oA2gWR0CHtXw97ngYdX2UKGgGaAloD0MI4sluZvSLLECUhpRSlGgVTegDaBZHQIfKw4EOiFl1fZQoaAZoCWgPQwgexM4UOixTQJSGlFKUaBVN6ANoFkdAh86aVdHDrXV9lChoBmgJaA9DCC5ZFeEmeyTAlIaUUpRoFU0kAWgWR0CH3UJsO5J9dX2UKGgGaAloD0MIhjjWxW2+XECUhpRSlGgVTegDaBZHQIfjBTVDrqt1fZQoaAZoCWgPQwiWBRN/FONfQJSGlFKUaBVN6ANoFkdAh+N66J66a3V9lChoBmgJaA9DCFq5F5iVXWBAlIaUUpRoFU3oA2gWR0CH5xzK9wm3dX2UKGgGaAloD0MI4ICWrmBQVkCUhpRSlGgVTegDaBZHQIfpoE2YOUd1fZQoaAZoCWgPQwgFacai6QNXQJSGlFKUaBVN6ANoFkdAh/FQ84gieXV9lChoBmgJaA9DCKw2/686WVxAlIaUUpRoFU3oA2gWR0CH9E9rXUYsdX2UKGgGaAloD0MIH6D7cmYrScCUhpRSlGgVTSUBaBZHQIf4b1CgK4R1fZQoaAZoCWgPQwhBKO/jaOdcQJSGlFKUaBVN6ANoFkdAh/mxlg+hXnV9lChoBmgJaA9DCLVv7q8ebltAlIaUUpRoFU3oA2gWR0CH+vmITGo8dX2UKGgGaAloD0MI7s1vmGhcV0CUhpRSlGgVTegDaBZHQIf/PyiEg4h1fZQoaAZoCWgPQwivl6YIcEofwJSGlFKUaBVNMAFoFkdAiAvvk7wKB3V9lChoBmgJaA9DCGEZG7rZDzfAlIaUUpRoFU0bAWgWR0CIDMPS2H+IdX2UKGgGaAloD0MImkF8YMePTsCUhpRSlGgVTRcBaBZHQIgfF8qnWJ91fZQoaAZoCWgPQwgOLbKd7/xeQJSGlFKUaBVN6ANoFkdAiCP64+bExnV9lChoBmgJaA9DCLg/Fw0Z5lRAlIaUUpRoFU3oA2gWR0CIMgqo60Y1dX2UKGgGaAloD0MIbD1DOGaZGECUhpRSlGgVTXUBaBZHQIg2oQtjCpF1fZQoaAZoCWgPQwiO5sjKL4c7wJSGlFKUaBVL/mgWR0CIOPDE3sHCdX2UKGgGaAloD0MIxVkRNdFfW0CUhpRSlGgVTegDaBZHQIhkk2zfJmx1fZQoaAZoCWgPQwjfGW1VEjZYQJSGlFKUaBVN6ANoFkdAiHMC8OCoTHV9lChoBmgJaA9DCAsm/ijqN1LAlIaUUpRoFU1LAWgWR0CIfP1Fpfx+dX2UKGgGaAloD0MIqb2ItuMSYECUhpRSlGgVTegDaBZHQIiNaHO8kD91fZQoaAZoCWgPQwjJO4cyVJ03wJSGlFKUaBVNMwFoFkdAiJKuuieum3V9lChoBmgJaA9DCDf8brpll1PAlIaUUpRoFU15AWgWR0CInXtfG+9KdX2UKGgGaAloD0MIIHwo0ZLuUkCUhpRSlGgVTegDaBZHQIilJxcVxjt1fZQoaAZoCWgPQwjrVWR0QE1gQJSGlFKUaBVN6ANoFkdAiKog8B+4LHV9lChoBmgJaA9DCL3kf/L3hmJAlIaUUpRoFU3oA2gWR0CIsF5mAbyZdX2UKGgGaAloD0MIqMMKt3wkTECUhpRSlGgVTegDaBZHQIi3vF3pwCN1fZQoaAZoCWgPQwhBt5c0Rn5cQJSGlFKUaBVN6ANoFkdAiL5FGG21D3V9lChoBmgJaA9DCKotdZDX6VhAlIaUUpRoFU3oA2gWR0CIwMf9P1tgdX2UKGgGaAloD0MIJF6ezhXeWECUhpRSlGgVTegDaBZHQIjE++VTrE91fZQoaAZoCWgPQwjpR8Mpc1JYQJSGlFKUaBVN6ANoFkdAiM+igCfYjHV9lChoBmgJaA9DCHr+tFGd0FFAlIaUUpRoFU3oA2gWR0CI2+BMBZIQdX2UKGgGaAloD0MIhpM0f0xbNMCUhpRSlGgVTSwBaBZHQIjlZoAXEZR1fZQoaAZoCWgPQwhi9UcYBq9gQJSGlFKUaBVN6ANoFkdAiOklEAo5P3V9lChoBmgJaA9DCClC6nb2nV5AlIaUUpRoFU3oA2gWR0CI9Mqfe1rqdX2UKGgGaAloD0MIq+y7IvggWECUhpRSlGgVTegDaBZHQIkysvCdjG11fZQoaAZoCWgPQwgyyjMvh5BZQJSGlFKUaBVN6ANoFkdAiTs3MhX8wnV9lChoBmgJaA9DCCfaVUj51VxAlIaUUpRoFU3oA2gWR0CJRhdJJ5E/dX2UKGgGaAloD0MIcxO1NLdOXECUhpRSlGgVTegDaBZHQIlJnEGZ/kN1fZQoaAZoCWgPQwh2ieqtAVFgQJSGlFKUaBVNbwNoFkdAiUsJF9a2W3V9lChoBmgJaA9DCA9gkV8/qGFAlIaUUpRoFU3oA2gWR0CJUFluFYdRdX2UKGgGaAloD0MIsFkuGx0LYECUhpRSlGgVTegDaBZHQIlVoqqfe1t1fZQoaAZoCWgPQwgShZZ1/3dfQJSGlFKUaBVN6ANoFkdAiWA/+CK77XV9lChoBmgJaA9DCCf5Eb9i8lxAlIaUUpRoFU3oA2gWR0CJZ772tdRjdX2UKGgGaAloD0MICRfyCG4cYkCUhpRSlGgVTegDaBZHQIlxLh1klNV1fZQoaAZoCWgPQwiEvYkhOXRaQJSGlFKUaBVN6ANoFkdAiXvzCDVYp3V9lChoBmgJaA9DCCHmkqptXWBAlIaUUpRoFU3oA2gWR0CJjzog3cYZdX2UKGgGaAloD0MImyFVFK+HXECUhpRSlGgVTegDaBZHQIme0wBYFJR1fZQoaAZoCWgPQwhDyk+qfepfQJSGlFKUaBVN6ANoFkdAiapBmGucMHV9lChoBmgJaA9DCLRYiuQrll5AlIaUUpRoFU3oA2gWR0CJrq8vmHQAdX2UKGgGaAloD0MISFLSw9BmWUCUhpRSlGgVTegDaBZHQIm8TY287IV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f31e4d290ad9838663d1f281ef520af1f5e0dc0e19724ec28053969e0ece0645
3
+ size 147422
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f22ea5e11f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f22ea5e1280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f22ea5e1310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f22ea5e13a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f22ea5e1430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f22ea5e14c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f22ea5e1550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f22ea5e15e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f22ea5e1670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f22ea5e1700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f22ea5e1790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f22ea5e1820>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f22ea5db600>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 507904,
47
+ "_total_timesteps": 500000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678264462343000115,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2KXb49ABW9UBUbO0r51Dkh44M+wJxZugAAgD8AAIA/MEKXPn1wXT+1YkU8bZRgvpu/gL2mYII9AAAAAAAAAABt31U+GHm7PxURIz+P6WS+LK0jPhUIdT0AAAAAAAAAAM2TPL5ccXO8SKdtOzz7kDnEttg9IfuUugAAgD8AAIA/QL2Hvijlkbxq7Te7+kNmueDGAD64q1o6AACAPwAAgD9mchY9w1FQun3Y5bpER0G1eCPguUa1AjoAAIA/AACAP3OnrL2PWh+6ftMyuj4nT7XwznM7rXpUOQAAgD8AAIA/5jrRPcNNP7roje+6DfhFtdT/JTupQgw6AACAPwAAgD+a3d68EFgjP8Xfm73ajTq+Xs9XPTjYVz0AAAAAAAAAAB2NgT5OIgE/iJwFPdP9er7A0jk90t6QPAAAAAAAAAAAgCC7vXFNL7lpR0y6XEhqtS26yLtauHc5AACAPwAAgD8Aoh28jyJ4ut4vSboGSvS1AKd2OwA0ZTkAAIA/AACAP3PDvj1SQIi5LcKQOdCgf7nan466+nZiuAAAgD8AAIA/gMc7PY+eOLoqOWy6YmEGtTKsvbphf4Y5AACAPwAAgD/AyoO9jw5QugAWfrvpOc44jc2kOiJDBToAAIA/AACAPxO7GL4fe827EXGtvNKlEb0gQzI9Cpb2PQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICDpa1ZLAWkCUhpRSlIwBbJRN6AOMAXSUR0CFuMhFEy+IdX2UKGgGaAloD0MIMbQ6OUPOXkCUhpRSlGgVTegDaBZHQIW+sSAYpDx1fZQoaAZoCWgPQwj+17lpM9xdQJSGlFKUaBVN6ANoFkdAhb9v+XJHRXV9lChoBmgJaA9DCFU01v7O3FlAlIaUUpRoFU3oA2gWR0CF3Rie/YapdX2UKGgGaAloD0MIytx8I7ofTcCUhpRSlGgVTVcBaBZHQIYVeitaIN51fZQoaAZoCWgPQwj60AX1LZBdQJSGlFKUaBVN6ANoFkdAhiCIAGSpznV9lChoBmgJaA9DCPxTqkTZTlRAlIaUUpRoFU3oA2gWR0CGJvygf2bodX2UKGgGaAloD0MINLkYA+uGXECUhpRSlGgVTegDaBZHQIYrUahpQDV1fZQoaAZoCWgPQwjhzoWRXuJdQJSGlFKUaBVN6ANoFkdAhjMvb48EFHV9lChoBmgJaA9DCLiswmYAsWFAlIaUUpRoFU3oA2gWR0CGNxSwW3z+dX2UKGgGaAloD0MIYCFzZVCdUUCUhpRSlGgVTegDaBZHQIY6oF7laKV1fZQoaAZoCWgPQwh7n6pCg/9oQJSGlFKUaBVNkwJoFkdAhkPZ+YtxuXV9lChoBmgJaA9DCC9P54pSjELAlIaUUpRoFU0yAWgWR0CGR+4MnZ00dX2UKGgGaAloD0MItK88SE82WECUhpRSlGgVTegDaBZHQIZOviJfpll1fZQoaAZoCWgPQwgBo8ubw7tEQJSGlFKUaBVN6ANoFkdAhlfGGmDUVnV9lChoBmgJaA9DCAjm6PF7hV9AlIaUUpRoFU3oA2gWR0CGWC5VfeDWdX2UKGgGaAloD0MIqKePwB94QcCUhpRSlGgVTQcBaBZHQIZdcU/OdG11fZQoaAZoCWgPQwjUYBqGj/A/QJSGlFKUaBVN6ANoFkdAhl4xBmf5DnV9lChoBmgJaA9DCO19qgoNpADAlIaUUpRoFU1tAWgWR0CGZIby6MBIdX2UKGgGaAloD0MIfzLGh9kpX0CUhpRSlGgVTegDaBZHQIZnVXaJyhl1fZQoaAZoCWgPQwjAsWfPZfxTQJSGlFKUaBVN6ANoFkdAhmxhkAggYHV9lChoBmgJaA9DCAsqqn6ljFxAlIaUUpRoFU3oA2gWR0CGcq7z06HTdX2UKGgGaAloD0MI3gTfNH15X0CUhpRSlGgVTegDaBZHQIaPBqGlANZ1fZQoaAZoCWgPQwiVfsLZraVFwJSGlFKUaBVNdgFoFkdAht92SU1Q7HV9lChoBmgJaA9DCOOL9nghyVhAlIaUUpRoFU3oA2gWR0CG5fCJGe+VdX2UKGgGaAloD0MIeGFrtvINXUCUhpRSlGgVTegDaBZHQIbrAaNuLrJ1fZQoaAZoCWgPQwhy3ZTyWlhXQJSGlFKUaBVN6ANoFkdAhu5mD15B1XV9lChoBmgJaA9DCLA8SE+RLl5AlIaUUpRoFU3oA2gWR0CG9yTpPhybdX2UKGgGaAloD0MI++WTFcM2YUCUhpRSlGgVTegDaBZHQIcA6kKu0Tl1fZQoaAZoCWgPQwj4p1SJstpXQJSGlFKUaBVN6ANoFkdAhwQsdLg4wXV9lChoBmgJaA9DCNyeILHd8FlAlIaUUpRoFU3oA2gWR0CHCyVoHs1LdX2UKGgGaAloD0MIa9jviXUXYkCUhpRSlGgVTegDaBZHQIcVChrWRRx1fZQoaAZoCWgPQwjsMvynGxxbQJSGlFKUaBVN6ANoFkdAhxWLqMWGh3V9lChoBmgJaA9DCLb0aKonsx1AlIaUUpRoFU0JAWgWR0CHGaCI1tO3dX2UKGgGaAloD0MIpki+EkgTXECUhpRSlGgVTegDaBZHQIccmnQ6ZIB1fZQoaAZoCWgPQwjSjbCoiLJWQJSGlFKUaBVN6ANoFkdAhx2FkpZwGXV9lChoBmgJaA9DCIPAyqFFkVdAlIaUUpRoFU3oA2gWR0CHJXRHf/FSdX2UKGgGaAloD0MImUuqtpuOU0CUhpRSlGgVTegDaBZHQIco88kleGB1fZQoaAZoCWgPQwiUv3tHjTtJQJSGlFKUaBVN6ANoFkdAhy8k9dNWVHV9lChoBmgJaA9DCLsNar+1Ix3AlIaUUpRoFU0AAWgWR0CHMMyC4BmxdX2UKGgGaAloD0MI2EroLoknOcCUhpRSlGgVTUUCaBZHQIc2R44ZMtd1fZQoaAZoCWgPQwg3b5wU5vtMQJSGlFKUaBVN6ANoFkdAh1EnQ6ZH/nV9lChoBmgJaA9DCFg7inPU5T/AlIaUUpRoFU3KAWgWR0CHXIRujynUdX2UKGgGaAloD0MIVWzM64ijXkCUhpRSlGgVTegDaBZHQIehPmig00p1fZQoaAZoCWgPQwhBRdWvdBVUQJSGlFKUaBVN6ANoFkdAh7D274BV/HV9lChoBmgJaA9DCJlIaTaPal1AlIaUUpRoFU3oA2gWR0CHtXw97ngYdX2UKGgGaAloD0MI4sluZvSLLECUhpRSlGgVTegDaBZHQIfKw4EOiFl1fZQoaAZoCWgPQwgexM4UOixTQJSGlFKUaBVN6ANoFkdAh86aVdHDrXV9lChoBmgJaA9DCC5ZFeEmeyTAlIaUUpRoFU0kAWgWR0CH3UJsO5J9dX2UKGgGaAloD0MIhjjWxW2+XECUhpRSlGgVTegDaBZHQIfjBTVDrqt1fZQoaAZoCWgPQwiWBRN/FONfQJSGlFKUaBVN6ANoFkdAh+N66J66a3V9lChoBmgJaA9DCFq5F5iVXWBAlIaUUpRoFU3oA2gWR0CH5xzK9wm3dX2UKGgGaAloD0MI4ICWrmBQVkCUhpRSlGgVTegDaBZHQIfpoE2YOUd1fZQoaAZoCWgPQwgFacai6QNXQJSGlFKUaBVN6ANoFkdAh/FQ84gieXV9lChoBmgJaA9DCKw2/686WVxAlIaUUpRoFU3oA2gWR0CH9E9rXUYsdX2UKGgGaAloD0MIH6D7cmYrScCUhpRSlGgVTSUBaBZHQIf4b1CgK4R1fZQoaAZoCWgPQwhBKO/jaOdcQJSGlFKUaBVN6ANoFkdAh/mxlg+hXnV9lChoBmgJaA9DCLVv7q8ebltAlIaUUpRoFU3oA2gWR0CH+vmITGo8dX2UKGgGaAloD0MI7s1vmGhcV0CUhpRSlGgVTegDaBZHQIf/PyiEg4h1fZQoaAZoCWgPQwivl6YIcEofwJSGlFKUaBVNMAFoFkdAiAvvk7wKB3V9lChoBmgJaA9DCGEZG7rZDzfAlIaUUpRoFU0bAWgWR0CIDMPS2H+IdX2UKGgGaAloD0MImkF8YMePTsCUhpRSlGgVTRcBaBZHQIgfF8qnWJ91fZQoaAZoCWgPQwgOLbKd7/xeQJSGlFKUaBVN6ANoFkdAiCP64+bExnV9lChoBmgJaA9DCLg/Fw0Z5lRAlIaUUpRoFU3oA2gWR0CIMgqo60Y1dX2UKGgGaAloD0MIbD1DOGaZGECUhpRSlGgVTXUBaBZHQIg2oQtjCpF1fZQoaAZoCWgPQwiO5sjKL4c7wJSGlFKUaBVL/mgWR0CIOPDE3sHCdX2UKGgGaAloD0MIxVkRNdFfW0CUhpRSlGgVTegDaBZHQIhkk2zfJmx1fZQoaAZoCWgPQwjfGW1VEjZYQJSGlFKUaBVN6ANoFkdAiHMC8OCoTHV9lChoBmgJaA9DCAsm/ijqN1LAlIaUUpRoFU1LAWgWR0CIfP1Fpfx+dX2UKGgGaAloD0MIqb2ItuMSYECUhpRSlGgVTegDaBZHQIiNaHO8kD91fZQoaAZoCWgPQwjJO4cyVJ03wJSGlFKUaBVNMwFoFkdAiJKuuieum3V9lChoBmgJaA9DCDf8brpll1PAlIaUUpRoFU15AWgWR0CInXtfG+9KdX2UKGgGaAloD0MIIHwo0ZLuUkCUhpRSlGgVTegDaBZHQIilJxcVxjt1fZQoaAZoCWgPQwjrVWR0QE1gQJSGlFKUaBVN6ANoFkdAiKog8B+4LHV9lChoBmgJaA9DCL3kf/L3hmJAlIaUUpRoFU3oA2gWR0CIsF5mAbyZdX2UKGgGaAloD0MIqMMKt3wkTECUhpRSlGgVTegDaBZHQIi3vF3pwCN1fZQoaAZoCWgPQwhBt5c0Rn5cQJSGlFKUaBVN6ANoFkdAiL5FGG21D3V9lChoBmgJaA9DCKotdZDX6VhAlIaUUpRoFU3oA2gWR0CIwMf9P1tgdX2UKGgGaAloD0MIJF6ezhXeWECUhpRSlGgVTegDaBZHQIjE++VTrE91fZQoaAZoCWgPQwjpR8Mpc1JYQJSGlFKUaBVN6ANoFkdAiM+igCfYjHV9lChoBmgJaA9DCHr+tFGd0FFAlIaUUpRoFU3oA2gWR0CI2+BMBZIQdX2UKGgGaAloD0MIhpM0f0xbNMCUhpRSlGgVTSwBaBZHQIjlZoAXEZR1fZQoaAZoCWgPQwhi9UcYBq9gQJSGlFKUaBVN6ANoFkdAiOklEAo5P3V9lChoBmgJaA9DCClC6nb2nV5AlIaUUpRoFU3oA2gWR0CI9Mqfe1rqdX2UKGgGaAloD0MIq+y7IvggWECUhpRSlGgVTegDaBZHQIkysvCdjG11fZQoaAZoCWgPQwgyyjMvh5BZQJSGlFKUaBVN6ANoFkdAiTs3MhX8wnV9lChoBmgJaA9DCCfaVUj51VxAlIaUUpRoFU3oA2gWR0CJRhdJJ5E/dX2UKGgGaAloD0MIcxO1NLdOXECUhpRSlGgVTegDaBZHQIlJnEGZ/kN1fZQoaAZoCWgPQwh2ieqtAVFgQJSGlFKUaBVNbwNoFkdAiUsJF9a2W3V9lChoBmgJaA9DCA9gkV8/qGFAlIaUUpRoFU3oA2gWR0CJUFluFYdRdX2UKGgGaAloD0MIsFkuGx0LYECUhpRSlGgVTegDaBZHQIlVoqqfe1t1fZQoaAZoCWgPQwgShZZ1/3dfQJSGlFKUaBVN6ANoFkdAiWA/+CK77XV9lChoBmgJaA9DCCf5Eb9i8lxAlIaUUpRoFU3oA2gWR0CJZ772tdRjdX2UKGgGaAloD0MICRfyCG4cYkCUhpRSlGgVTegDaBZHQIlxLh1klNV1fZQoaAZoCWgPQwiEvYkhOXRaQJSGlFKUaBVN6ANoFkdAiXvzCDVYp3V9lChoBmgJaA9DCCHmkqptXWBAlIaUUpRoFU3oA2gWR0CJjzog3cYZdX2UKGgGaAloD0MImyFVFK+HXECUhpRSlGgVTegDaBZHQIme0wBYFJR1fZQoaAZoCWgPQwhDyk+qfepfQJSGlFKUaBVN6ANoFkdAiapBmGucMHV9lChoBmgJaA9DCLRYiuQrll5AlIaUUpRoFU3oA2gWR0CJrq8vmHQAdX2UKGgGaAloD0MISFLSw9BmWUCUhpRSlGgVTegDaBZHQIm8TY287IV1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 124,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:901bc8b9fcb4aeb0491ab7acc5b1a959cd445185a970a626f26646aa79c5bba8
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ad86191db903eebc9c9b76787705b63e9b2780161e66432e79b0dc3a83760d5
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (256 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 8.112835921103988, "std_reward": 64.47734806897343, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T08:56:14.873507"}