djsull commited on
Commit
deee665
·
verified ·
1 Parent(s): ec45d2f

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:100K<n<1M
9
+ - loss:MatryoshkaLoss
10
+ - loss:MultipleNegativesRankingLoss
11
+ - loss:CosineSimilarityLoss
12
+ base_model: klue/roberta-small
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+ widget:
25
+ - source_sentence: 백마를 이끄는 여자
26
+ sentences:
27
+ - 갈색 말을 타고 있는 여자
28
+ - 남자와 여자가 키스하고 있다.
29
+ - 남자가 칼로 물병을 썰고 있다
30
+ - source_sentence: 꽤 괜찮은데
31
+ sentences:
32
+ - 아주 좋아요.
33
+ - 개가 옷을 입고 있다.
34
+ - 아무도 무대에 서지 않는다.
35
+ - source_sentence: 지루하군요.
36
+ sentences:
37
+ - 힘드네요! 정말 힘드네요!
38
+ - 여자는 아이를 돕는다.
39
+ - 사람들이 손을 내밀고 있다
40
+ - source_sentence: 인간의 지위
41
+ sentences:
42
+ - 인간의 지위.
43
+ - 그것은 비열하지 않다.
44
+ - 아무도 해고당하지 않는다.
45
+ - source_sentence: 인간의 지적
46
+ sentences:
47
+ - 인간 관찰
48
+ - 사람들이 안에 서 있다
49
+ - 아무도 앉아 있지 않다
50
+ pipeline_tag: sentence-similarity
51
+ model-index:
52
+ - name: SentenceTransformer based on klue/roberta-small
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: sts dev
59
+ type: sts-dev
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.848109514939322
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.8469617889194193
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.8290541524988974
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.832916353112548
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.8296914939989355
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.8335696459808043
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.7961861998493428
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.7996870460025013
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.848109514939322
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.8469617889194193
90
+ name: Spearman Max
91
+ ---
92
+
93
+ # SentenceTransformer based on klue/roberta-small
94
+
95
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-small](https://huggingface.co/klue/roberta-small). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
96
+
97
+ ## Model Details
98
+
99
+ ### Model Description
100
+ - **Model Type:** Sentence Transformer
101
+ - **Base model:** [klue/roberta-small](https://huggingface.co/klue/roberta-small) <!-- at revision 5fe1f0cb3946f0ea1c01e657cd1688771cf47802 -->
102
+ - **Maximum Sequence Length:** 256 tokens
103
+ - **Output Dimensionality:** 768 tokens
104
+ - **Similarity Function:** Cosine Similarity
105
+ <!-- - **Training Dataset:** Unknown -->
106
+ <!-- - **Language:** Unknown -->
107
+ <!-- - **License:** Unknown -->
108
+
109
+ ### Model Sources
110
+
111
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
112
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
113
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
114
+
115
+ ### Full Model Architecture
116
+
117
+ ```
118
+ SentenceTransformer(
119
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
120
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
121
+ )
122
+ ```
123
+
124
+ ## Usage
125
+
126
+ ### Direct Usage (Sentence Transformers)
127
+
128
+ First install the Sentence Transformers library:
129
+
130
+ ```bash
131
+ pip install -U sentence-transformers
132
+ ```
133
+
134
+ Then you can load this model and run inference.
135
+ ```python
136
+ from sentence_transformers import SentenceTransformer
137
+
138
+ # Download from the 🤗 Hub
139
+ model = SentenceTransformer("sentence_transformers_model_id")
140
+ # Run inference
141
+ sentences = [
142
+ '인간의 지적',
143
+ '인간 관찰',
144
+ '사람들이 안에 서 있다',
145
+ ]
146
+ embeddings = model.encode(sentences)
147
+ print(embeddings.shape)
148
+ # [3, 768]
149
+
150
+ # Get the similarity scores for the embeddings
151
+ similarities = model.similarity(embeddings, embeddings)
152
+ print(similarities.shape)
153
+ # [3, 3]
154
+ ```
155
+
156
+ <!--
157
+ ### Direct Usage (Transformers)
158
+
159
+ <details><summary>Click to see the direct usage in Transformers</summary>
160
+
161
+ </details>
162
+ -->
163
+
164
+ <!--
165
+ ### Downstream Usage (Sentence Transformers)
166
+
167
+ You can finetune this model on your own dataset.
168
+
169
+ <details><summary>Click to expand</summary>
170
+
171
+ </details>
172
+ -->
173
+
174
+ <!--
175
+ ### Out-of-Scope Use
176
+
177
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
178
+ -->
179
+
180
+ ## Evaluation
181
+
182
+ ### Metrics
183
+
184
+ #### Semantic Similarity
185
+ * Dataset: `sts-dev`
186
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
187
+
188
+ | Metric | Value |
189
+ |:-------------------|:----------|
190
+ | pearson_cosine | 0.8481 |
191
+ | spearman_cosine | 0.847 |
192
+ | pearson_manhattan | 0.8291 |
193
+ | spearman_manhattan | 0.8329 |
194
+ | pearson_euclidean | 0.8297 |
195
+ | spearman_euclidean | 0.8336 |
196
+ | pearson_dot | 0.7962 |
197
+ | spearman_dot | 0.7997 |
198
+ | pearson_max | 0.8481 |
199
+ | **spearman_max** | **0.847** |
200
+
201
+ <!--
202
+ ## Bias, Risks and Limitations
203
+
204
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
205
+ -->
206
+
207
+ <!--
208
+ ### Recommendations
209
+
210
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
211
+ -->
212
+
213
+ ## Training Details
214
+
215
+ ### Training Datasets
216
+
217
+ #### Unnamed Dataset
218
+
219
+
220
+ * Size: 568,640 training samples
221
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
222
+ * Approximate statistics based on the first 1000 samples:
223
+ | | sentence_0 | sentence_1 | sentence_2 |
224
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
225
+ | type | string | string | string |
226
+ | details | <ul><li>min: 4 tokens</li><li>mean: 19.02 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 18.36 tokens</li><li>max: 95 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.31 tokens</li><li>max: 35 tokens</li></ul> |
227
+ * Samples:
228
+ | sentence_0 | sentence_1 | sentence_2 |
229
+ |:------------------------------------------|:-----------------------------------------------------------------------|:------------------------------------------|
230
+ | <code>악기를 연주하는 사람.</code> | <code>여자 옆에서 백파이프를 연주하는 잘 차려입은 남자</code> | <code>노숙자가 잔돈을 구걸한다.</code> |
231
+ | <code>셔츠에 이벤트 번호를 새긴 남자들은 길을 걸어간다.</code> | <code>멘스 셔츠에 숫자가 적혀 있다.</code> | <code>남자들이 길에서 자고 있다.</code> |
232
+ | <code>군인들은 기지에서 함께 어울린다.</code> | <code>한 무리의 군인들이 그늘을 입고 방에 함께 앉아 있었고, 벽에 있는 작은 틈으로 빛이 최고조에 달했다.</code> | <code>한 무리의 민간인들이 적의 공격으로부터 움츠러든다.</code> |
233
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
234
+ ```json
235
+ {
236
+ "loss": "MultipleNegativesRankingLoss",
237
+ "matryoshka_dims": [
238
+ 768,
239
+ 256
240
+ ],
241
+ "matryoshka_weights": [
242
+ 1,
243
+ 1
244
+ ],
245
+ "n_dims_per_step": -1
246
+ }
247
+ ```
248
+
249
+ #### Unnamed Dataset
250
+
251
+
252
+ * Size: 5,749 training samples
253
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
254
+ * Approximate statistics based on the first 1000 samples:
255
+ | | sentence_0 | sentence_1 | label |
256
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
257
+ | type | string | string | float |
258
+ | details | <ul><li>min: 5 tokens</li><li>mean: 17.15 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 16.86 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
259
+ * Samples:
260
+ | sentence_0 | sentence_1 | label |
261
+ |:-----------------------------------------|:-----------------------------------|:------------------|
262
+ | <code>남자가 기타를 치고 있다.</code> | <code>소뇌는 기타를 치고 있다.</code> | <code>0.72</code> |
263
+ | <code>고양이가 빨판을 핥고 있다.</code> | <code>한 여성이 오이를 자르고 있다.</code> | <code>0.0</code> |
264
+ | <code>누군가가 파워 드릴로 나무 조각에 구멍을 뚫는다.</code> | <code>한 남자가 나무 조각에 구멍을 뚫는다.</code> | <code>0.64</code> |
265
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
266
+ ```json
267
+ {
268
+ "loss": "CosineSimilarityLoss",
269
+ "matryoshka_dims": [
270
+ 768,
271
+ 256
272
+ ],
273
+ "matryoshka_weights": [
274
+ 1,
275
+ 1
276
+ ],
277
+ "n_dims_per_step": -1
278
+ }
279
+ ```
280
+
281
+ ### Training Hyperparameters
282
+ #### Non-Default Hyperparameters
283
+
284
+ - `eval_strategy`: steps
285
+ - `num_train_epochs`: 5
286
+ - `batch_sampler`: no_duplicates
287
+ - `multi_dataset_batch_sampler`: round_robin
288
+
289
+ #### All Hyperparameters
290
+ <details><summary>Click to expand</summary>
291
+
292
+ - `overwrite_output_dir`: False
293
+ - `do_predict`: False
294
+ - `eval_strategy`: steps
295
+ - `prediction_loss_only`: True
296
+ - `per_device_train_batch_size`: 8
297
+ - `per_device_eval_batch_size`: 8
298
+ - `per_gpu_train_batch_size`: None
299
+ - `per_gpu_eval_batch_size`: None
300
+ - `gradient_accumulation_steps`: 1
301
+ - `eval_accumulation_steps`: None
302
+ - `learning_rate`: 5e-05
303
+ - `weight_decay`: 0.0
304
+ - `adam_beta1`: 0.9
305
+ - `adam_beta2`: 0.999
306
+ - `adam_epsilon`: 1e-08
307
+ - `max_grad_norm`: 1
308
+ - `num_train_epochs`: 5
309
+ - `max_steps`: -1
310
+ - `lr_scheduler_type`: linear
311
+ - `lr_scheduler_kwargs`: {}
312
+ - `warmup_ratio`: 0.0
313
+ - `warmup_steps`: 0
314
+ - `log_level`: passive
315
+ - `log_level_replica`: warning
316
+ - `log_on_each_node`: True
317
+ - `logging_nan_inf_filter`: True
318
+ - `save_safetensors`: True
319
+ - `save_on_each_node`: False
320
+ - `save_only_model`: False
321
+ - `restore_callback_states_from_checkpoint`: False
322
+ - `no_cuda`: False
323
+ - `use_cpu`: False
324
+ - `use_mps_device`: False
325
+ - `seed`: 42
326
+ - `data_seed`: None
327
+ - `jit_mode_eval`: False
328
+ - `use_ipex`: False
329
+ - `bf16`: False
330
+ - `fp16`: False
331
+ - `fp16_opt_level`: O1
332
+ - `half_precision_backend`: auto
333
+ - `bf16_full_eval`: False
334
+ - `fp16_full_eval`: False
335
+ - `tf32`: None
336
+ - `local_rank`: 0
337
+ - `ddp_backend`: None
338
+ - `tpu_num_cores`: None
339
+ - `tpu_metrics_debug`: False
340
+ - `debug`: []
341
+ - `dataloader_drop_last`: False
342
+ - `dataloader_num_workers`: 0
343
+ - `dataloader_prefetch_factor`: None
344
+ - `past_index`: -1
345
+ - `disable_tqdm`: False
346
+ - `remove_unused_columns`: True
347
+ - `label_names`: None
348
+ - `load_best_model_at_end`: False
349
+ - `ignore_data_skip`: False
350
+ - `fsdp`: []
351
+ - `fsdp_min_num_params`: 0
352
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
353
+ - `fsdp_transformer_layer_cls_to_wrap`: None
354
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
355
+ - `deepspeed`: None
356
+ - `label_smoothing_factor`: 0.0
357
+ - `optim`: adamw_torch
358
+ - `optim_args`: None
359
+ - `adafactor`: False
360
+ - `group_by_length`: False
361
+ - `length_column_name`: length
362
+ - `ddp_find_unused_parameters`: None
363
+ - `ddp_bucket_cap_mb`: None
364
+ - `ddp_broadcast_buffers`: False
365
+ - `dataloader_pin_memory`: True
366
+ - `dataloader_persistent_workers`: False
367
+ - `skip_memory_metrics`: True
368
+ - `use_legacy_prediction_loop`: False
369
+ - `push_to_hub`: False
370
+ - `resume_from_checkpoint`: None
371
+ - `hub_model_id`: None
372
+ - `hub_strategy`: every_save
373
+ - `hub_private_repo`: False
374
+ - `hub_always_push`: False
375
+ - `gradient_checkpointing`: False
376
+ - `gradient_checkpointing_kwargs`: None
377
+ - `include_inputs_for_metrics`: False
378
+ - `eval_do_concat_batches`: True
379
+ - `fp16_backend`: auto
380
+ - `push_to_hub_model_id`: None
381
+ - `push_to_hub_organization`: None
382
+ - `mp_parameters`:
383
+ - `auto_find_batch_size`: False
384
+ - `full_determinism`: False
385
+ - `torchdynamo`: None
386
+ - `ray_scope`: last
387
+ - `ddp_timeout`: 1800
388
+ - `torch_compile`: False
389
+ - `torch_compile_backend`: None
390
+ - `torch_compile_mode`: None
391
+ - `dispatch_batches`: None
392
+ - `split_batches`: None
393
+ - `include_tokens_per_second`: False
394
+ - `include_num_input_tokens_seen`: False
395
+ - `neftune_noise_alpha`: None
396
+ - `optim_target_modules`: None
397
+ - `batch_eval_metrics`: False
398
+ - `batch_sampler`: no_duplicates
399
+ - `multi_dataset_batch_sampler`: round_robin
400
+
401
+ </details>
402
+
403
+ ### Training Logs
404
+ | Epoch | Step | Training Loss | sts-dev_spearman_max |
405
+ |:------:|:----:|:-------------:|:--------------------:|
406
+ | 0.3477 | 500 | 0.931 | - |
407
+ | 0.6954 | 1000 | 0.7062 | 0.8313 |
408
+ | 1.0007 | 1439 | - | 0.8379 |
409
+ | 1.0424 | 1500 | 0.5893 | - |
410
+ | 1.3901 | 2000 | 0.3406 | 0.8343 |
411
+ | 1.7378 | 2500 | 0.2514 | - |
412
+ | 2.0007 | 2878 | - | 0.8450 |
413
+ | 2.0848 | 3000 | 0.2252 | 0.8470 |
414
+
415
+
416
+ ### Framework Versions
417
+ - Python: 3.10.12
418
+ - Sentence Transformers: 3.0.0
419
+ - Transformers: 4.41.2
420
+ - PyTorch: 2.3.0+cu121
421
+ - Accelerate: 0.30.1
422
+ - Datasets: 2.19.2
423
+ - Tokenizers: 0.19.1
424
+
425
+ ## Citation
426
+
427
+ ### BibTeX
428
+
429
+ #### Sentence Transformers
430
+ ```bibtex
431
+ @inproceedings{reimers-2019-sentence-bert,
432
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
433
+ author = "Reimers, Nils and Gurevych, Iryna",
434
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
435
+ month = "11",
436
+ year = "2019",
437
+ publisher = "Association for Computational Linguistics",
438
+ url = "https://arxiv.org/abs/1908.10084",
439
+ }
440
+ ```
441
+
442
+ #### MatryoshkaLoss
443
+ ```bibtex
444
+ @misc{kusupati2024matryoshka,
445
+ title={Matryoshka Representation Learning},
446
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
447
+ year={2024},
448
+ eprint={2205.13147},
449
+ archivePrefix={arXiv},
450
+ primaryClass={cs.LG}
451
+ }
452
+ ```
453
+
454
+ #### MultipleNegativesRankingLoss
455
+ ```bibtex
456
+ @misc{henderson2017efficient,
457
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
458
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
459
+ year={2017},
460
+ eprint={1705.00652},
461
+ archivePrefix={arXiv},
462
+ primaryClass={cs.CL}
463
+ }
464
+ ```
465
+
466
+ <!--
467
+ ## Glossary
468
+
469
+ *Clearly define terms in order to be accessible across audiences.*
470
+ -->
471
+
472
+ <!--
473
+ ## Model Card Authors
474
+
475
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
476
+ -->
477
+
478
+ <!--
479
+ ## Model Card Contact
480
+
481
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
482
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/ko-sentence-transformers/output/kor_multi_klue-roberta-small-2024-06-07_07-07-51",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 6,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.41.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5859842c64d5c473c30e58ef5e54273d62b8d3ebc492efae229c2502bba2bc6
3
+ size 272375040
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 256,
52
+ "model_max_length": 256,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff