update readme
Browse files- README.md +51 -7
- image-1.png +0 -0
- image-2.png +0 -0
README.md
CHANGED
@@ -2,14 +2,25 @@
|
|
2 |
library_name: sentence-transformers
|
3 |
pipeline_tag: sentence-similarity
|
4 |
tags:
|
|
|
5 |
- sentence-transformers
|
6 |
- feature-extraction
|
7 |
- sentence-similarity
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
# djovak/embedic-base
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
15 |
<!--- Describe your model here -->
|
@@ -26,21 +37,54 @@ Then you can use the model like this:
|
|
26 |
|
27 |
```python
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["
|
30 |
|
31 |
model = SentenceTransformer('djovak/embedic-base')
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
43 |
|
|
|
44 |
|
45 |
|
46 |
## Full Model Architecture
|
@@ -52,6 +96,6 @@ SentenceTransformer(
|
|
52 |
)
|
53 |
```
|
54 |
|
55 |
-
##
|
56 |
|
57 |
-
|
|
|
2 |
library_name: sentence-transformers
|
3 |
pipeline_tag: sentence-similarity
|
4 |
tags:
|
5 |
+
- mteb
|
6 |
- sentence-transformers
|
7 |
- feature-extraction
|
8 |
- sentence-similarity
|
9 |
+
license: mit
|
10 |
+
language:
|
11 |
+
- multilingual
|
12 |
+
- en
|
13 |
+
- sr
|
14 |
---
|
15 |
|
16 |
# djovak/embedic-base
|
17 |
|
18 |
+
Say hello to **Embedić**, a group of new text embedding models finetuned for the Serbian language!
|
19 |
+
|
20 |
+
These models are particularly useful in Information Retrieval and RAG purposes. Check out images showcasing benchmark performance, you can beat previous SOTA with 5x fewer parameters!
|
21 |
+
|
22 |
+
Although specialized for Serbian(Cyrillic and Latin scripts), Embedić is Cross-lingual(it understands English too). So you can embed English docs, Serbian docs, or a combination of the two :)
|
23 |
+
|
24 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
25 |
|
26 |
<!--- Describe your model here -->
|
|
|
37 |
|
38 |
```python
|
39 |
from sentence_transformers import SentenceTransformer
|
40 |
+
sentences = ["ko je Nikola Tesla?", "Nikola Tesla je poznati pronalazač", "Nikola Jokić je poznati košarkaš"]
|
41 |
|
42 |
model = SentenceTransformer('djovak/embedic-base')
|
43 |
embeddings = model.encode(sentences)
|
44 |
print(embeddings)
|
45 |
```
|
46 |
|
47 |
+
### Important usage notes
|
48 |
+
- "ošišana ćirilica" (usage of c instead of ć, etc...) significantly deacreases search quality
|
49 |
+
- The usage of uppercase letters for named entities can significantly improve search quality
|
50 |
+
|
51 |
+
|
52 |
+
## Evaluation
|
53 |
+
|
54 |
+
|
55 |
+
### **Model description**:
|
56 |
+
|
57 |
+
| Model Name | Dimension | Sequence Length | Parameters
|
58 |
+
|:----:|:---:|:---:|:---:|
|
59 |
+
| [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 512 | 117M
|
60 |
+
| [djovak/embedic-small](https://huggingface.co/djovak/embedic-small) | 384 | 512 | 117M
|
61 |
+
|||||||||
|
62 |
+
| [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 512 | 278M
|
63 |
+
| [djovak/embedic-base](https://huggingface.co/djovak/embedic-base) | 768 | 512 | 278M
|
64 |
+
|||||||||
|
65 |
+
| [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 512 | 560M
|
66 |
+
| [djovak/embedic-large](https://huggingface.co/djovak/embedic-large) | 1024 | 512 | 560M
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
`BM25-ENG` - Elasticsearch with English analyzer
|
71 |
+
|
72 |
+
|
73 |
+
`BM25-SRB` - Elasticsearch with Serbian analyzer
|
74 |
+
|
75 |
+
### evaluation resultsresults
|
76 |
+
|
77 |
+
Evaluation on 3 tasks: Information Retrieval, Sentence Similarity, and Bitext mining. I personally translated the STS17 cross-lingual evaluation dataset and Spent 6,000$ on Google translate API, translating 4 IR evaluation datasets into Serbian language.
|
78 |
|
79 |
+
Evaluation datasets will be published as Part of [MTEB benchmark](https://huggingface.co/spaces/mteb/leaderboard) in the near future.
|
80 |
|
81 |
+
![information retrieval results](image-2.png)
|
82 |
|
83 |
+
![sentence similarity results](image-1.png)
|
84 |
|
85 |
+
## Contact
|
86 |
|
87 |
+
If you have any question or sugestion related to this project, you can open an issue or pull request. You can also email me at novakzivanic@gmail.com
|
88 |
|
89 |
|
90 |
## Full Model Architecture
|
|
|
96 |
)
|
97 |
```
|
98 |
|
99 |
+
## License
|
100 |
|
101 |
+
Embedić models are licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
image-1.png
ADDED
image-2.png
ADDED