{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dd02957e050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd02957e0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd02957e170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd02957e200>", "_build": "<function ActorCriticPolicy._build at 0x7dd02957e290>", "forward": "<function ActorCriticPolicy.forward at 0x7dd02957e320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd02957e3b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd02957e440>", "_predict": "<function ActorCriticPolicy._predict at 0x7dd02957e4d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd02957e560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd02957e5f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd02957e680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dd0295263c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712961539091774492, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZFmb0UVKe6fxHCt0kPs7K3v0I620rfNgAAgD8AAIA/Wg5EPnYJqz8zmgw/NB7MvqMQnT5fbxE+AAAAAAAAAACNNpi++GQoP0iRXj0nPNK+I4cqvi1R4j0AAAAAAAAAABobKz300aM/MCNEPk7D375bgKI99rVyPAAAAAAAAAAAunIGvvo9Vz/2PY67feGcvsXBOr6Ao8Q9AAAAAAAAAAAAgW+9iimsPx81Hr9wHN2++p/TOtoP/70AAAAAAAAAAJpRtTsA7n4/OGatvJWzx77/WXi8rv70uwAAAAAAAAAAAJ09vfbsRrpCpY+009F3sGPMrjqGNYQzAACAPwAAgD+tEwI+KSubP56BKz+BnQG/7h8pPQC1SD4AAAAAAAAAALPaWL7QEpA/R9IKv7zPA79WTaG+9RxbvgAAAAAAAAAAwM06PhzN3z74fpa+xYqIvho4zr0Cw0I8AAAAAAAAAAAz08s9SGmNusoZIDgaoRgz7yMLO23kObcAAIA/AACAP8OoYb6cf4w+CJn9PZ6pUb5pBmC7Jk5LvQAAAAAAAAAAJlW7vSxJpj8q9rq+Lo3ovgJFHb5W0zi+AAAAAAAAAACaj0G+5QEUP4JfpbwkbZu+FZBCvaV4pT0AAAAAAAAAAM2YEbxk1Ms9dzIuvd0cP74Lkks9ipbuvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHM7ufqX4TOMAWyUS/eMAXSUR0CX+kY2sJY1dX2UKGgGR0BxR5C+lCTmaAdNMAFoCEdAl/sSJ9AoonV9lChoBkdAcN1/N7jT8mgHTR8BaAhHQJf8RuJk5IZ1fZQoaAZHQHIH2pEQXhxoB00hAWgIR0CX/FYht+CsdX2UKGgGR0AvNIV/MGHIaAdL62gIR0CX/JqveP7vdX2UKGgGR0BvIZSYPXkHaAdNLQFoCEdAl/z0EkjX4HV9lChoBkdAcLY4Hoouw2gHTUgBaAhHQJf9MBtDUmV1fZQoaAZHQG712+GoJiRoB003AWgIR0CX/UPK+zt1dX2UKGgGR0Bwpz2ugYgraAdNAAFoCEdAl/13eaa1C3V9lChoBkdAb1+aXKKYRmgHTRABaAhHQJf99t3wCr91fZQoaAZHQHCM8ZUDMeRoB00qAWgIR0CX/tnuAqd6dX2UKGgGR0Bv6Mi+tbLVaAdNCQFoCEdAmAEuYtxuK3V9lChoBkdAcSRS9M9KVmgHTTwBaAhHQJgB3Mr3Cbd1fZQoaAZHQG7OFBhQWN5oB01HAWgIR0CYAgMZP2wndX2UKGgGR0BxNtuWKMvRaAdNFQFoCEdAmALGo3rD63V9lChoBkdAbapmnO0LMWgHTSoBaAhHQJgDc8IRh+h1fZQoaAZHQHERRYRujypoB01JAWgIR0CYA36ij+JhdX2UKGgGR0Bxq4Uvf0mMaAdNLQFoCEdAmAThvNu+AXV9lChoBkdAbb5WkrPMS2gHTRQBaAhHQJgFd0bLlmx1fZQoaAZHQHEWtEb5uZVoB00VAWgIR0CYBeLgn+hodX2UKGgGR0BwqgIY3vQXaAdNHgFoCEdAmAX8ZxaPjnV9lChoBkdAcMtdgv114mgHTQ8BaAhHQJgGFi9Zid91fZQoaAZHQHArcGxD9floB00HAWgIR0CYBovv0AcUdX2UKGgGR0Bwsbegte2NaAdNEgFoCEdAmAafFirksHV9lChoBkdAcUhOM2m52GgHTTcBaAhHQJgHzoePq9p1fZQoaAZHQG0FWIoE0SBoB0v/aAhHQJgIRGhEjPh1fZQoaAZHQHIJwqRU3n9oB01BAWgIR0CYCVVDrqt6dX2UKGgGR0BvW9PP9kz5aAdL/WgIR0CYC1nzxwyZdX2UKGgGR0Bup0Vgx8D0aAdNBwFoCEdAmAuT+BH09XV9lChoBkdAbwU3fAKv3mgHTQYBaAhHQJgMraufVZt1fZQoaAZHQHHq27OE/SpoB01HAWgIR0CYDSDYRNAUdX2UKGgGR0BxwUbfgrH3aAdNIQFoCEdAmA2ka2nbZnV9lChoBkdAb4218b70nWgHS/NoCEdAmA30WAPNFHV9lChoBkdAcOVAxzq8lGgHTUwBaAhHQJgOgxtYSxt1fZQoaAZHQG6KeWv8qF1oB00AAWgIR0CYDvMvAXVLdX2UKGgGR0BvwveLvTgEaAdNKQFoCEdAmA8EPMB6r3V9lChoBkdAcr7iay8jA2gHTRoBaAhHQJgPUO3DvVp1fZQoaAZHQG9yESM98qpoB00rAWgIR0CYD91sLv1EdX2UKGgGR0Btsvdl/YrbaAdNAgFoCEdAmBANRaX8fnV9lChoBkdAcNRz+FUQ1GgHTT0BaAhHQJgQtG5MDfZ1fZQoaAZHQHHvhikO7QNoB01mAWgIR0CYIkdsBQvYdX2UKGgGR0BxEe1c+qzaaAdNHAFoCEdAmCJQ7xNIsnV9lChoBkdAccjIGhVU/GgHTUUBaAhHQJgkH8R+SbJ1fZQoaAZHQHFqcGxD9floB00nAWgIR0CYJY/NJOFhdX2UKGgGR0Bv5fjhky1vaAdNPgFoCEdAmCYaz7di2HV9lChoBkdAcKuEETxoZmgHTRoBaAhHQJgmPwkPczt1fZQoaAZHQHE6fQWvbGpoB0v7aAhHQJgmc8HObAl1fZQoaAZHQHBqqJdjXnRoB00RAWgIR0CYJtQ1aW5ZdX2UKGgGR0By1zVYp2ECaAdL7mgIR0CYKDBJI1+BdX2UKGgGR0Bw0+Cwr1/UaAdNTAFoCEdAmCg1Sn+AE3V9lChoBkdAcVeRhttQ9GgHTR4BaAhHQJgo37qIJqt1fZQoaAZHQHFleN1hb4doB003AWgIR0CYKN5sCT2WdX2UKGgGR0Bx7ymNzbN9aAdNKQFoCEdAmCjuMIeHSHV9lChoBkdAcpEyFPBSDWgHTSEBaAhHQJgpiQEIPbx1fZQoaAZHQG14aVdHDrJoB00GAWgIR0CYKgScLBsRdX2UKGgGR0ByU5aQmu1XaAdNGgFoCEdAmCo2ZmZmZnV9lChoBkdAcQZwhGH58GgHTV4BaAhHQJgqV46fapR1fZQoaAZHQHC4eMhouf5oB00uAWgIR0CYKwrLhaTwdX2UKGgGR0BzT6JFb3XaaAdL5GgIR0CYLCc81XNkdX2UKGgGR0BtAbAk9lmOaAdNQwFoCEdAmC2So4uK43V9lChoBkdAclf+Jxeb/mgHTRUBaAhHQJguY5ksjFB1fZQoaAZHQG+XQUQCjlBoB00nAWgIR0CYLsD7qIJrdX2UKGgGR0Bw4FWgezUraAdNFgFoCEdAmC7PboKUmnV9lChoBkdAcdaYyO7xu2gHTTsBaAhHQJgvNcTrVvx1fZQoaAZHQG2JDdP+GXZoB0v+aAhHQJgvXLEDQqt1fZQoaAZHQHLpit/4IrxoB0vqaAhHQJgvYmICU5d1fZQoaAZHQHIwQSi/O+toB0vyaAhHQJgvpIre67N1fZQoaAZHQHBi++ZgG8poB00ZAWgIR0CYMCMeOn2qdX2UKGgGR0ByNUd1dPcjaAdNEgFoCEdAmDB6lDWsinV9lChoBkdAclFKxcE/0WgHTQsBaAhHQJgw3Xg9/z91fZQoaAZHQHCKRdpqREFoB00lAWgIR0CYMjcawUxmdX2UKGgGR0ByU+X4TK1YaAdNMgFoCEdAmDMNAgPmP3V9lChoBkdAcOJGgzxgA2gHTRUBaAhHQJgzRvn8sMB1fZQoaAZHQG2NNIClrM1oB01CAWgIR0CYM9rqdH2AdX2UKGgGR0BwbTUkOZssaAdNDAFoCEdAmDSS8Fpwj3V9lChoBkdAcf4uGsV+JGgHTQkBaAhHQJg3amhufmN1fZQoaAZHQHAkXavicXpoB002AWgIR0CYOFFVT72tdX2UKGgGR0BxEwMnZ00WaAdNDgFoCEdAmDjzgZTAFnV9lChoBkdAcmBmAbyYomgHTR8BaAhHQJg5APUaybB1fZQoaAZHQHGxRZU1hstoB00pAWgIR0CYOYS8rZrYdX2UKGgGR0BwULWf9P1taAdNCgFoCEdAmDl+SwGGEnV9lChoBkdAb74WnjyWiWgHS/5oCEdAmDmd2C/XXnV9lChoBkdAcQDMotthu2gHTRwBaAhHQJg5tavA44p1fZQoaAZHQEwB2QGOdXloB0vbaAhHQJg6nPa+N991fZQoaAZHQG++ZckdFORoB00lAWgIR0CYOwSQYDT0dX2UKGgGR0BvyQ6p5u63aAdNUAFoCEdAmDsSM5wOv3V9lChoBkdAbz4/Dcdo4GgHTSkBaAhHQJg7gUIsyzp1fZQoaAZHQHAaRjvuw5hoB00LAWgIR0CYPI9du5z6dX2UKGgGR0BxUwiQkonbaAdNJgFoCEdAmD0hIz3yqnV9lChoBkdAbbya1kUbk2gHTR4BaAhHQJg9d0xM3611fZQoaAZHQHHbo4VARkFoB009AWgIR0CYPs9PUKAsdX2UKGgGR0By3ScbzbvgaAdL+WgIR0CYPvEDhcZ+dX2UKGgGR0Bw7F7zCk44aAdL/GgIR0CYP/oysS00dX2UKGgGR0ByCQWTHKfWaAdNEgFoCEdAmEBAKKHfuXV9lChoBkdAcNXE7W/ag2gHTQ8BaAhHQJhAo7zTWoZ1fZQoaAZHQG8toiLVFx5oB0v9aAhHQJhArFUADJV1fZQoaAZHQHFvoFaB7NVoB00IAWgIR0CYQONnGsFMdX2UKGgGR0BxOvXFtKqXaAdNEAFoCEdAmEED5bhWHXV9lChoBkdAUf5XDFZPmGgHS9doCEdAmEEK3Zwn6XV9lChoBkdAcS2MmF8G92gHS/FoCEdAmEFCEtdzGXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |