|
|
|
|
|
|
|
import os |
|
import sys |
|
import tempfile |
|
from dataclasses import dataclass |
|
from pathlib import Path |
|
from typing import Literal, Optional |
|
|
|
import torch |
|
import torchaudio |
|
from simple_parsing import ArgumentParser, field |
|
|
|
from tortoise.api import MODELS_DIR, TextToSpeech |
|
from tortoise.utils.audio import load_audio |
|
from tortoise.utils.diffusion import SAMPLERS |
|
from tortoise.models.vocoder import VocConf |
|
|
|
|
|
@dataclass |
|
class General: |
|
"""General options""" |
|
|
|
text: str = field(positional=True, nargs="*", metavar="text") |
|
"""Text to speak. If omitted, text is read from stdin.""" |
|
|
|
voice: str = field(default="random", alias=["-v"]) |
|
"""Selects the voice to use for generation. Use the & character to join two voices together. |
|
Use a comma to perform inference on multiple voices. Set to "all" to use all available voices. |
|
Note that multiple voices require the --output-dir option to be set.""" |
|
|
|
voices_dir: Optional[str] = field(default=None, alias=["-V"]) |
|
"""Path to directory containing extra voices to be loaded. Use a comma to specify multiple directories.""" |
|
|
|
preset: Literal["ultra_fast", "fast", "standard", "high_quality"] = field( |
|
default="fast", alias=["-p"] |
|
) |
|
"""Which voice quality preset to use.""" |
|
|
|
quiet: bool = field(default=False, alias=["-q"]) |
|
"""Suppress all output.""" |
|
|
|
voicefixer: bool = field(default=True) |
|
"""Enable/Disable voicefixer""" |
|
|
|
|
|
@dataclass |
|
class Output: |
|
"""Output options""" |
|
|
|
list_voices: bool = field(default=False, alias=["-l"]) |
|
"""List available voices and exit.""" |
|
|
|
play: bool = field(default=False, alias=["-P"]) |
|
"""Play the audio (requires pydub).""" |
|
|
|
output: Optional[Path] = field(default=None, alias=["-o"]) |
|
"""Save the audio to a file.""" |
|
|
|
output_dir: Path = field(default=Path("results/"), alias=["-O"]) |
|
"""Save the audio to a directory as individual segments.""" |
|
|
|
|
|
@dataclass |
|
class MultiOutput: |
|
"""Multi-output options""" |
|
|
|
candidates: int = 1 |
|
"""How many output candidates to produce per-voice. Note that only the first candidate is used in the combined output.""" |
|
|
|
regenerate: Optional[str] = None |
|
"""Comma-separated list of clip numbers to re-generate.""" |
|
|
|
skip_existing: bool = False |
|
"""Set to skip re-generating existing clips.""" |
|
|
|
|
|
@dataclass |
|
class Advanced: |
|
"""Advanced options""" |
|
|
|
produce_debug_state: bool = False |
|
"""Whether or not to produce debug_states in current directory, which can aid in reproducing problems.""" |
|
|
|
seed: Optional[int] = None |
|
"""Random seed which can be used to reproduce results.""" |
|
|
|
models_dir: str = MODELS_DIR |
|
"""Where to find pretrained model checkpoints. Tortoise automatically downloads these to |
|
~/.cache/tortoise/.models, so this should only be specified if you have custom checkpoints.""" |
|
|
|
text_split: Optional[str] = None |
|
"""How big chunks to split the text into, in the format <desired_length>,<max_length>.""" |
|
|
|
disable_redaction: bool = False |
|
"""Normally text enclosed in brackets are automatically redacted from the spoken output |
|
(but are still rendered by the model), this can be used for prompt engineering. |
|
Set this to disable this behavior.""" |
|
|
|
device: Optional[str] = None |
|
"""Device to use for inference.""" |
|
|
|
batch_size: Optional[int] = None |
|
"""Batch size to use for inference. If omitted, the batch size is set based on available GPU memory.""" |
|
|
|
vocoder: Literal["Univnet", "BigVGAN", "BigVGAN_Base"] = "BigVGAN_Base" |
|
"""Pretrained vocoder to be used. |
|
Univnet - tortoise original |
|
BigVGAN - 112M model |
|
BigVGAN_Base - 14M model |
|
""" |
|
|
|
ar_checkpoint: Optional[str] = None |
|
"""Path to a checkpoint to use for the autoregressive model. If omitted, the default checkpoint is used.""" |
|
|
|
clvp_checkpoint: Optional[str] = None |
|
"""Path to a checkpoint to use for the CLVP model. If omitted, the default checkpoint is used.""" |
|
|
|
diff_checkpoint: Optional[str] = None |
|
"""Path to a checkpoint to use for the diffusion model. If omitted, the default checkpoint is used.""" |
|
|
|
|
|
@dataclass |
|
class Tuning: |
|
"""Tuning options (overrides preset settings)""" |
|
|
|
num_autoregressive_samples: Optional[int] = None |
|
"""Number of samples taken from the autoregressive model, all of which are filtered using CLVP. |
|
As TorToiSe is a probabilistic model, more samples means a higher probability of creating something "great".""" |
|
|
|
temperature: Optional[float] = None |
|
"""The softmax temperature of the autoregressive model.""" |
|
|
|
length_penalty: Optional[float] = None |
|
"""A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.""" |
|
|
|
repetition_penalty: Optional[float] = None |
|
"""A penalty that prevents the autoregressive decoder from repeating itself during decoding. |
|
Can be used to reduce the incidence of long silences or "uhhhhhhs", etc.""" |
|
|
|
top_p: Optional[float] = None |
|
"""P value used in nucleus sampling. 0 to 1. Lower values mean the decoder produces more "likely" (aka boring) outputs.""" |
|
|
|
max_mel_tokens: Optional[int] = None |
|
"""Restricts the output length. 1 to 600. Each unit is 1/20 of a second.""" |
|
|
|
cvvp_amount: Optional[float] = None |
|
"""How much the CVVP model should influence the output. |
|
Increasing this can in some cases reduce the likelihood of multiple speakers.""" |
|
|
|
diffusion_iterations: Optional[int] = None |
|
"""Number of diffusion steps to perform. More steps means the network has more chances to iteratively |
|
refine the output, which should theoretically mean a higher quality output. |
|
Generally a value above 250 is not noticeably better, however.""" |
|
|
|
cond_free: Optional[bool] = None |
|
"""Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for |
|
each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output |
|
of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and |
|
dramatically improves realism.""" |
|
|
|
cond_free_k: Optional[float] = None |
|
"""Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. |
|
As cond_free_k increases, the output becomes dominated by the conditioning-free signal. |
|
Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k""" |
|
|
|
diffusion_temperature: Optional[float] = None |
|
"""Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 |
|
are the "mean" prediction of the diffusion network and will sound bland and smeared.""" |
|
|
|
|
|
@dataclass |
|
class Speed: |
|
"""New/speed options""" |
|
|
|
low_vram: bool = False |
|
"""re-enable default offloading behaviour of tortoise""" |
|
|
|
half: bool = False |
|
"""enable autocast to half precision for autoregressive model""" |
|
|
|
no_cache: bool = False |
|
"""disable kv_cache usage. This should really only be used if you are very low on vram.""" |
|
|
|
sampler: Optional[str] = field(default=None, choices=SAMPLERS) |
|
"""override the sampler used for diffusion (default depends on --preset)""" |
|
|
|
original_tortoise: bool = False |
|
"""ensure results are identical to original tortoise-tts repo""" |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = ArgumentParser( |
|
description="TorToiSe is a text-to-speech program that is capable of synthesizing speech " |
|
"in multiple voices with realistic prosody and intonation." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
parser.add_arguments(General, "general") |
|
parser.add_arguments(Output, "output") |
|
parser.add_arguments(MultiOutput, "multi_output") |
|
parser.add_arguments(Advanced, "advanced") |
|
parser.add_arguments(Tuning, "tuning") |
|
parser.add_arguments(Speed, "speed") |
|
|
|
usage_examples = f""" |
|
Examples: |
|
|
|
Read text using random voice and place it in a file: |
|
|
|
{parser.prog} -o hello.wav "Hello, how are you?" |
|
|
|
Read text from stdin and play it using the tom voice: |
|
|
|
echo "Say it like you mean it!" | {parser.prog} -P -v tom |
|
|
|
Read a text file using multiple voices and save the audio clips to a directory: |
|
|
|
{parser.prog} -O /tmp/tts-results -v tom,emma <textfile.txt |
|
""" |
|
|
|
|
|
try: |
|
args = parser.parse_args() |
|
except SystemExit as e: |
|
if e.code == 0: |
|
print(usage_examples) |
|
sys.exit(e.code) |
|
|
|
|
|
|
|
|
|
|
|
|
|
from tortoise.inference import ( |
|
check_pydub, |
|
get_all_voices, |
|
get_seed, |
|
parse_multiarg_text, |
|
parse_voice_str, |
|
split_text, |
|
validate_output_dir, |
|
voice_loader, |
|
save_gen_with_voicefix |
|
) |
|
|
|
|
|
all_voices, extra_voice_dirs = get_all_voices(args.general.voices_dir) |
|
if args.output.list_voices: |
|
for v in all_voices: |
|
print(v) |
|
sys.exit(0) |
|
selected_voices = parse_voice_str(args.general.voice, all_voices) |
|
voice_generator = voice_loader(selected_voices, extra_voice_dirs) |
|
|
|
|
|
if not args.general.text: |
|
print("reading text from stdin!") |
|
text = parse_multiarg_text(args.general.text) |
|
texts = split_text(text, args.advanced.text_split) |
|
|
|
output_dir = validate_output_dir( |
|
args.output.output_dir, selected_voices, args.multi_output.candidates |
|
) |
|
|
|
|
|
pydub = check_pydub(args.output.play) |
|
|
|
seed = get_seed(args.advanced.seed) |
|
verbose = not args.general.quiet |
|
|
|
vocoder = getattr(VocConf, args.advanced.vocoder) |
|
if verbose: |
|
print("Loading tts...") |
|
tts = TextToSpeech( |
|
models_dir=args.advanced.models_dir, |
|
enable_redaction=not args.advanced.disable_redaction, |
|
device=args.advanced.device, |
|
autoregressive_batch_size=args.advanced.batch_size, |
|
high_vram=not args.speed.low_vram, |
|
kv_cache=not args.speed.no_cache, |
|
ar_checkpoint=args.advanced.ar_checkpoint, |
|
clvp_checkpoint=args.advanced.clvp_checkpoint, |
|
diff_checkpoint=args.advanced.diff_checkpoint, |
|
vocoder=vocoder, |
|
) |
|
|
|
gen_settings = { |
|
"use_deterministic_seed": seed, |
|
"verbose": verbose, |
|
"k": args.multi_output.candidates, |
|
"preset": args.general.preset, |
|
} |
|
tuning_options = [ |
|
"num_autoregressive_samples", |
|
"temperature", |
|
"length_penalty", |
|
"repetition_penalty", |
|
"top_p", |
|
"max_mel_tokens", |
|
"cvvp_amount", |
|
"diffusion_iterations", |
|
"cond_free", |
|
"cond_free_k", |
|
"diffusion_temperature", |
|
] |
|
for option in tuning_options: |
|
if getattr(args.tuning, option) is not None: |
|
gen_settings[option] = getattr(args.tuning, option) |
|
|
|
speed_options = [ |
|
"sampler", |
|
"original_tortoise", |
|
"half", |
|
] |
|
for option in speed_options: |
|
if getattr(args.speed, option) is not None: |
|
gen_settings[option] = getattr(args.speed, option) |
|
|
|
total_clips = len(texts) * len(selected_voices) |
|
regenerate_clips = ( |
|
[int(x) for x in args.multi_output.regenerate.split(",")] |
|
if args.multi_output.regenerate |
|
else None |
|
) |
|
for voice_idx, (voice, voice_samples, conditioning_latents) in enumerate( |
|
voice_generator |
|
): |
|
audio_parts = [] |
|
for text_idx, text in enumerate(texts): |
|
clip_name = f'{"-".join(voice)}_{text_idx:02d}' |
|
if args.output.output_dir: |
|
first_clip = os.path.join(args.output.output_dir, f"{clip_name}_00.wav") |
|
if ( |
|
args.multi_output.skip_existing |
|
or (regenerate_clips and text_idx not in regenerate_clips) |
|
) and os.path.exists(first_clip): |
|
audio_parts.append(load_audio(first_clip, 24000)) |
|
if verbose: |
|
print(f"Skipping {clip_name}") |
|
continue |
|
if verbose: |
|
print( |
|
f"Rendering {clip_name} ({(voice_idx * len(texts) + text_idx + 1)} of {total_clips})..." |
|
) |
|
print(" " + text) |
|
gen = tts.tts_with_preset( |
|
text, |
|
voice_samples=voice_samples, |
|
conditioning_latents=conditioning_latents, |
|
**gen_settings, |
|
) |
|
gen = gen if args.multi_output.candidates > 1 else [gen] |
|
for candidate_idx, audio in enumerate(gen): |
|
audio = audio.squeeze(0).cpu() |
|
if candidate_idx == 0: |
|
audio_parts.append(audio) |
|
if args.output.output_dir: |
|
filename = f"{clip_name}_{candidate_idx:02d}.wav" |
|
save_gen_with_voicefix(audio, os.path.join(args.output.output_dir, filename), squeeze=False, voicefixer=args.general.voicefixer) |
|
|
|
audio = torch.cat(audio_parts, dim=-1) |
|
if args.output.output_dir: |
|
filename = f'{"-".join(voice)}_combined.wav' |
|
save_gen_with_voicefix( |
|
audio, |
|
os.path.join(args.output.output_dir, filename), |
|
squeeze=False, |
|
voicefixer=args.general.voicefixer, |
|
) |
|
elif args.output.output: |
|
filename = args.output.output or os.tmp |
|
save_gen_with_voicefix(audio, filename, squeeze=False, voicefixer=args.general.voicefixer) |
|
elif args.output.play: |
|
print("WARNING: cannot use voicefixer with --play") |
|
f = tempfile.NamedTemporaryFile(suffix=".wav", delete=True) |
|
torchaudio.save(f.name, audio, 24000) |
|
pydub.playback.play(pydub.AudioSegment.from_wav(f.name)) |
|
|
|
if args.advanced.produce_debug_state: |
|
os.makedirs("debug_states", exist_ok=True) |
|
dbg_state = (seed, texts, voice_samples, conditioning_latents, args) |
|
torch.save( |
|
dbg_state, os.path.join("debug_states", f'debug_{"-".join(voice)}.pth') |
|
) |
|
|