Upload 2 files to avoid trust_remote_code
Browse files- configuration.py +145 -0
- modeling.py +1384 -0
configuration.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" NEW model configuration"""
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class NewConfig(PretrainedConfig):
|
24 |
+
r"""
|
25 |
+
This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to
|
26 |
+
instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a
|
27 |
+
configuration with the defaults will yield a similar configuration to that of the NEW
|
28 |
+
[izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture.
|
29 |
+
|
30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
31 |
+
documentation from [`PretrainedConfig`] for more information.
|
32 |
+
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
36 |
+
Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the
|
37 |
+
`inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
38 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
39 |
+
Dimensionality of the encoder layers and the pooler layer.
|
40 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
41 |
+
Number of hidden layers in the Transformer encoder.
|
42 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
43 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
44 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
45 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
46 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
47 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
48 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
49 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
51 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
52 |
+
The dropout ratio for the attention probabilities.
|
53 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
54 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
55 |
+
just in case (e.g., 512 or 1024 or 2048).
|
56 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
57 |
+
The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
61 |
+
The epsilon used by the layer normalization layers.
|
62 |
+
position_embedding_type (`str`, *optional*, defaults to `"rope"`):
|
63 |
+
Type of position embedding. Choose one of `"absolute"`, `"rope"`.
|
64 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
65 |
+
The base period of the RoPE embeddings.
|
66 |
+
rope_scaling (`Dict`, *optional*):
|
67 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
68 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
69 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
70 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
71 |
+
these scaling strategies behave:
|
72 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
73 |
+
experimental feature, subject to breaking API changes in future versions.
|
74 |
+
classifier_dropout (`float`, *optional*):
|
75 |
+
The dropout ratio for the classification head.
|
76 |
+
|
77 |
+
Examples:
|
78 |
+
|
79 |
+
```python
|
80 |
+
>>> from transformers import NewConfig, NewModel
|
81 |
+
|
82 |
+
>>> # Initializing a NEW izhx/new-base-en style configuration
|
83 |
+
>>> configuration = NewConfig()
|
84 |
+
|
85 |
+
>>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration
|
86 |
+
>>> model = NewModel(configuration)
|
87 |
+
|
88 |
+
>>> # Accessing the model configuration
|
89 |
+
>>> configuration = model.config
|
90 |
+
```"""
|
91 |
+
|
92 |
+
model_type = "new"
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
vocab_size=30528,
|
97 |
+
hidden_size=768,
|
98 |
+
num_hidden_layers=12,
|
99 |
+
num_attention_heads=12,
|
100 |
+
intermediate_size=3072,
|
101 |
+
hidden_act="gelu",
|
102 |
+
hidden_dropout_prob=0.1,
|
103 |
+
attention_probs_dropout_prob=0.0,
|
104 |
+
max_position_embeddings=2048,
|
105 |
+
type_vocab_size=1,
|
106 |
+
initializer_range=0.02,
|
107 |
+
layer_norm_type='layer_norm',
|
108 |
+
layer_norm_eps=1e-12,
|
109 |
+
# pad_token_id=0,
|
110 |
+
position_embedding_type="rope",
|
111 |
+
rope_theta=10000.0,
|
112 |
+
rope_scaling=None,
|
113 |
+
classifier_dropout=None,
|
114 |
+
pack_qkv=True,
|
115 |
+
unpad_inputs=False,
|
116 |
+
use_memory_efficient_attention=False,
|
117 |
+
logn_attention_scale=False,
|
118 |
+
logn_attention_clip1=False,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
super().__init__(**kwargs)
|
122 |
+
|
123 |
+
self.vocab_size = vocab_size
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.num_hidden_layers = num_hidden_layers
|
126 |
+
self.num_attention_heads = num_attention_heads
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.intermediate_size = intermediate_size
|
129 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
130 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
131 |
+
self.max_position_embeddings = max_position_embeddings
|
132 |
+
self.type_vocab_size = type_vocab_size
|
133 |
+
self.initializer_range = initializer_range
|
134 |
+
self.layer_norm_type = layer_norm_type
|
135 |
+
self.layer_norm_eps = layer_norm_eps
|
136 |
+
self.position_embedding_type = position_embedding_type
|
137 |
+
self.rope_theta = rope_theta
|
138 |
+
self.rope_scaling = rope_scaling
|
139 |
+
self.classifier_dropout = classifier_dropout
|
140 |
+
|
141 |
+
self.pack_qkv = pack_qkv
|
142 |
+
self.unpad_inputs = unpad_inputs
|
143 |
+
self.use_memory_efficient_attention = use_memory_efficient_attention
|
144 |
+
self.logn_attention_scale = logn_attention_scale
|
145 |
+
self.logn_attention_clip1 = logn_attention_clip1
|
modeling.py
ADDED
@@ -0,0 +1,1384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch NEW model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.modeling_outputs import (
|
27 |
+
BaseModelOutput,
|
28 |
+
BaseModelOutputWithPooling,
|
29 |
+
MaskedLMOutput,
|
30 |
+
MultipleChoiceModelOutput,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
+
SequenceClassifierOutput,
|
33 |
+
TokenClassifierOutput,
|
34 |
+
)
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.utils import logging
|
37 |
+
|
38 |
+
try:
|
39 |
+
import xformers.ops as xops
|
40 |
+
except ImportError as e:
|
41 |
+
xops = None
|
42 |
+
|
43 |
+
from .configuration import NewConfig
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
|
49 |
+
# Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
|
50 |
+
# Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
|
51 |
+
class IndexFirstAxis(torch.autograd.Function):
|
52 |
+
@staticmethod
|
53 |
+
def forward(ctx, input, indices):
|
54 |
+
ctx.save_for_backward(indices)
|
55 |
+
assert input.ndim >= 2
|
56 |
+
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
57 |
+
second_dim = other_shape.numel()
|
58 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
59 |
+
# return input[indices]
|
60 |
+
# return torch.gather(
|
61 |
+
# rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
|
62 |
+
# ).reshape(-1, *other_shape)
|
63 |
+
return torch.gather(
|
64 |
+
input.view(ctx.first_axis_dim, second_dim),
|
65 |
+
0,
|
66 |
+
indices.unsqueeze(-1).expand(indices.size(0), second_dim)
|
67 |
+
).reshape(-1, *other_shape)
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def backward(ctx, grad_output):
|
71 |
+
(indices,) = ctx.saved_tensors
|
72 |
+
assert grad_output.ndim >= 2
|
73 |
+
other_shape = grad_output.shape[1:]
|
74 |
+
# grad_output = rearrange(grad_output, "b ... -> b (...)")
|
75 |
+
grad_output = grad_output.view(grad_output.size(0), other_shape.numel())
|
76 |
+
grad_input = torch.zeros(
|
77 |
+
[ctx.first_axis_dim, grad_output.shape[1]],
|
78 |
+
device=grad_output.device,
|
79 |
+
dtype=grad_output.dtype,
|
80 |
+
)
|
81 |
+
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
82 |
+
# grad_input[indices] = grad_output
|
83 |
+
# grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
|
84 |
+
grad_input.scatter_(
|
85 |
+
0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output
|
86 |
+
)
|
87 |
+
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
88 |
+
|
89 |
+
|
90 |
+
index_first_axis = IndexFirstAxis.apply
|
91 |
+
|
92 |
+
|
93 |
+
def unpad_input(hidden_states, attention_mask=None, indices=None):
|
94 |
+
"""
|
95 |
+
Arguments:
|
96 |
+
hidden_states: (batch, seqlen, ...)
|
97 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
98 |
+
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
|
99 |
+
Return:
|
100 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
101 |
+
"""
|
102 |
+
if indices is None:
|
103 |
+
assert attention_mask is not None
|
104 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
105 |
+
|
106 |
+
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
107 |
+
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
108 |
+
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
109 |
+
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
110 |
+
# so we write custom forward and backward to make it a bit faster.
|
111 |
+
hidden_states = hidden_states.view(-1, *hidden_states.shape[2:])
|
112 |
+
return index_first_axis(hidden_states, indices)
|
113 |
+
|
114 |
+
|
115 |
+
class IndexPutFirstAxis(torch.autograd.Function):
|
116 |
+
@staticmethod
|
117 |
+
def forward(
|
118 |
+
ctx,
|
119 |
+
values: torch.Tensor,
|
120 |
+
indices: torch.Tensor,
|
121 |
+
first_axis_dim
|
122 |
+
) -> torch.Tensor:
|
123 |
+
ctx.save_for_backward(indices)
|
124 |
+
assert indices.ndim == 1
|
125 |
+
assert values.ndim >= 2
|
126 |
+
output = torch.zeros(
|
127 |
+
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
|
128 |
+
)
|
129 |
+
output[indices] = values
|
130 |
+
return output
|
131 |
+
|
132 |
+
@staticmethod
|
133 |
+
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
|
134 |
+
indices, = ctx.saved_tensors
|
135 |
+
grad_values = grad_output[indices]
|
136 |
+
return grad_values, None, None
|
137 |
+
|
138 |
+
|
139 |
+
index_put_first_axis = IndexPutFirstAxis.apply
|
140 |
+
|
141 |
+
|
142 |
+
def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
|
143 |
+
"""Add padding to sequences.
|
144 |
+
|
145 |
+
Arguments:
|
146 |
+
inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
147 |
+
indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()`
|
148 |
+
batch: int batch_size
|
149 |
+
seqlen: int max sequence length
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
inputs: (batch, seqlen, ...)
|
153 |
+
"""
|
154 |
+
output = index_put_first_axis(inputs, indices, batch * seqlen)
|
155 |
+
return output.view(batch, seqlen, *inputs.shape[1:])
|
156 |
+
|
157 |
+
|
158 |
+
def rotate_half(x):
|
159 |
+
"""Rotates half the hidden dims of the input."""
|
160 |
+
x1 = x[..., : x.shape[-1] // 2]
|
161 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
162 |
+
return torch.cat((-x2, x1), dim=-1)
|
163 |
+
|
164 |
+
|
165 |
+
def apply_rotary_pos_emb(q, k, cos, sin):
|
166 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
q (`torch.Tensor`): The query tensor.
|
170 |
+
k (`torch.Tensor`): The key tensor.
|
171 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
172 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
173 |
+
Returns:
|
174 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
175 |
+
"""
|
176 |
+
cos, sin = cos.to(q.dtype), sin.to(q.dtype)
|
177 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
178 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
179 |
+
return q_embed, k_embed
|
180 |
+
|
181 |
+
|
182 |
+
class RotaryEmbedding(torch.nn.Module):
|
183 |
+
def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None):
|
184 |
+
super().__init__()
|
185 |
+
|
186 |
+
self.dim = dim
|
187 |
+
self.max_position_embeddings = max_position_embeddings
|
188 |
+
self.base = base
|
189 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
190 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
191 |
+
|
192 |
+
# Build here to make `torch.jit.trace` work.
|
193 |
+
self._set_cos_sin_cache(
|
194 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
195 |
+
)
|
196 |
+
|
197 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
198 |
+
self.max_seq_len_cached = seq_len
|
199 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
200 |
+
|
201 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
202 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
203 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
204 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
205 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
206 |
+
|
207 |
+
def forward(self, x, seq_len=None):
|
208 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
209 |
+
if seq_len > self.max_seq_len_cached:
|
210 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
211 |
+
|
212 |
+
return (
|
213 |
+
self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
|
214 |
+
self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
|
215 |
+
)
|
216 |
+
|
217 |
+
|
218 |
+
class NTKScalingRotaryEmbedding(RotaryEmbedding):
|
219 |
+
"""RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """
|
220 |
+
|
221 |
+
def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None):
|
222 |
+
self.scaling_factor = scaling_factor
|
223 |
+
self.mixed_b = mixed_b
|
224 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
225 |
+
max_position_embeddings = max_position_embeddings * self.scaling_factor
|
226 |
+
self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype())
|
227 |
+
|
228 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
229 |
+
self.max_seq_len_cached = seq_len
|
230 |
+
|
231 |
+
if seq_len > self.max_position_embeddings:
|
232 |
+
base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
|
233 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
234 |
+
|
235 |
+
if self.mixed_b is None:
|
236 |
+
inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim) # (6)
|
237 |
+
else:
|
238 |
+
a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b # (13)
|
239 |
+
lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp() # (12)
|
240 |
+
inv_freq = inv_freq / lambda_1_m # (10)
|
241 |
+
|
242 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
243 |
+
|
244 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
245 |
+
|
246 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
247 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
248 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
249 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
250 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
251 |
+
|
252 |
+
|
253 |
+
class RMSNorm(nn.Module):
|
254 |
+
def __init__(self, hidden_size, eps=1e-6):
|
255 |
+
"""
|
256 |
+
RMSNorm is equivalent to T5LayerNorm
|
257 |
+
"""
|
258 |
+
super().__init__()
|
259 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
260 |
+
self.variance_epsilon = eps
|
261 |
+
|
262 |
+
def forward(self, hidden_states):
|
263 |
+
input_dtype = hidden_states.dtype
|
264 |
+
hidden_states = hidden_states.to(torch.float32)
|
265 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
266 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
267 |
+
return self.weight * hidden_states.to(input_dtype)
|
268 |
+
|
269 |
+
|
270 |
+
LAYER_NORM = {
|
271 |
+
'layer_norm': nn.LayerNorm,
|
272 |
+
'rms_norm': RMSNorm
|
273 |
+
}
|
274 |
+
|
275 |
+
|
276 |
+
class NewEmbeddings(nn.Module):
|
277 |
+
"""
|
278 |
+
Embedding and Unpadding.
|
279 |
+
"""
|
280 |
+
|
281 |
+
def __init__(self, config: NewConfig):
|
282 |
+
super().__init__()
|
283 |
+
self.padding_idx = config.pad_token_id
|
284 |
+
self.word_embeddings = nn.Embedding(
|
285 |
+
config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
|
286 |
+
)
|
287 |
+
|
288 |
+
self.position_embedding_type = config.position_embedding_type
|
289 |
+
if self.position_embedding_type == 'absolute':
|
290 |
+
self.position_embeddings = nn.Embedding(
|
291 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
292 |
+
)
|
293 |
+
elif self.position_embedding_type == 'rope':
|
294 |
+
self._init_rope(config)
|
295 |
+
else:
|
296 |
+
raise ValueError
|
297 |
+
|
298 |
+
self.type_vocab_size = config.type_vocab_size
|
299 |
+
if self.type_vocab_size > 0:
|
300 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
301 |
+
|
302 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
303 |
+
# any TensorFlow checkpoint file
|
304 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
305 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
306 |
+
# position_ids is contiguous in memory and excluded when serialized
|
307 |
+
self.register_buffer(
|
308 |
+
"position_ids", torch.arange(config.max_position_embeddings), persistent=False
|
309 |
+
)
|
310 |
+
|
311 |
+
def _init_rope(self, config):
|
312 |
+
kwargs = dict(
|
313 |
+
dim=int(config.hidden_size / config.num_attention_heads),
|
314 |
+
max_position_embeddings=config.max_position_embeddings,
|
315 |
+
base=config.rope_theta
|
316 |
+
)
|
317 |
+
if config.rope_scaling is None:
|
318 |
+
self.rotary_emb = RotaryEmbedding(**kwargs)
|
319 |
+
else:
|
320 |
+
kwargs.update(scaling_factor=config.rope_scaling["factor"])
|
321 |
+
scaling_type = config.rope_scaling["type"]
|
322 |
+
if scaling_type == 'ntk':
|
323 |
+
kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None))
|
324 |
+
self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs)
|
325 |
+
# elif scaling_type == "linear":
|
326 |
+
# self.rotary_emb = LinearScalingRotaryEmbedding(**kwargs)
|
327 |
+
# elif scaling_type == "dynamic":
|
328 |
+
# self.rotary_emb = DynamicNTKScalingRotaryEmbedding(**kwargs)
|
329 |
+
else:
|
330 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
331 |
+
|
332 |
+
def forward(
|
333 |
+
self,
|
334 |
+
unpad_inputs: bool,
|
335 |
+
input_ids: Optional[torch.Tensor] = None,
|
336 |
+
attention_mask: Optional[torch.Tensor] = None,
|
337 |
+
length: Optional[List[int]] = None,
|
338 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
339 |
+
position_ids: Optional[torch.Tensor] = None,
|
340 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
341 |
+
) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]:
|
342 |
+
"""
|
343 |
+
"""
|
344 |
+
if inputs_embeds is None:
|
345 |
+
device, input_shape = input_ids.device, input_ids.shape
|
346 |
+
else:
|
347 |
+
device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2]
|
348 |
+
batch_size, seq_length = input_shape
|
349 |
+
|
350 |
+
# Set attention_mask if it's None
|
351 |
+
if attention_mask is None:
|
352 |
+
attention_mask = torch.ones(input_shape, device=device)
|
353 |
+
if length is not None:
|
354 |
+
for i, l in enumerate(length):
|
355 |
+
attention_mask[i, l:] = 0
|
356 |
+
|
357 |
+
# Set attention_mask_bool for unpadding
|
358 |
+
if unpad_inputs:
|
359 |
+
attention_mask_bool = attention_mask.bool()
|
360 |
+
if length is None:
|
361 |
+
length = attention_mask.sum(-1).tolist()
|
362 |
+
|
363 |
+
# Get word embeddings
|
364 |
+
if inputs_embeds is None:
|
365 |
+
if unpad_inputs:
|
366 |
+
input_ids = input_ids[attention_mask_bool].unsqueeze(0)
|
367 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
368 |
+
else:
|
369 |
+
if unpad_inputs:
|
370 |
+
inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0)
|
371 |
+
embeddings = inputs_embeds
|
372 |
+
|
373 |
+
# Set and unpad position_ids
|
374 |
+
if position_ids is None:
|
375 |
+
if seq_length > self.position_ids.size(0):
|
376 |
+
self.register_buffer(
|
377 |
+
"position_ids", torch.arange(seq_length), persistent=False
|
378 |
+
)
|
379 |
+
if unpad_inputs:
|
380 |
+
# [1, cumsum_seq_len]
|
381 |
+
position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0)
|
382 |
+
else:
|
383 |
+
# [bs, seq_len]
|
384 |
+
position_ids = self.position_ids[:seq_length].expand(batch_size, -1)
|
385 |
+
elif unpad_inputs:
|
386 |
+
position_ids = position_ids[attention_mask_bool].unsqueeze(0) # [1, cumsum_seq_len]
|
387 |
+
|
388 |
+
# Compute rotary embedding
|
389 |
+
if self.position_embedding_type == 'rope':
|
390 |
+
rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length)
|
391 |
+
rope_cos = rope_cos[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
|
392 |
+
rope_sin = rope_sin[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
|
393 |
+
rope_embeds = rope_cos, rope_sin
|
394 |
+
else:
|
395 |
+
rope_embeds = None
|
396 |
+
|
397 |
+
if self.type_vocab_size > 0:
|
398 |
+
if token_type_ids is None:
|
399 |
+
token_type_ids = position_ids.mul(0)
|
400 |
+
elif unpad_inputs:
|
401 |
+
token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)
|
402 |
+
|
403 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
404 |
+
embeddings += token_type_embeddings
|
405 |
+
|
406 |
+
# BERT position
|
407 |
+
if self.position_embedding_type == "absolute":
|
408 |
+
position_embeddings = self.position_embeddings(position_ids)
|
409 |
+
embeddings += position_embeddings
|
410 |
+
|
411 |
+
embeddings = self.LayerNorm(embeddings)
|
412 |
+
embeddings = self.dropout(embeddings)
|
413 |
+
|
414 |
+
return embeddings, attention_mask, rope_embeds, length
|
415 |
+
|
416 |
+
|
417 |
+
class NewAttention(nn.Module):
|
418 |
+
def __init__(self, config: NewConfig, pack_qkv=None, use_memory_efficient_attention=None):
|
419 |
+
super().__init__()
|
420 |
+
self.config = config
|
421 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
422 |
+
raise ValueError(
|
423 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
424 |
+
f"heads ({config.num_attention_heads})"
|
425 |
+
)
|
426 |
+
|
427 |
+
self.hidden_size = config.hidden_size
|
428 |
+
self.num_attention_heads = config.num_attention_heads
|
429 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
430 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
431 |
+
|
432 |
+
if pack_qkv is None:
|
433 |
+
pack_qkv = config.pack_qkv
|
434 |
+
self.pack_qkv = pack_qkv
|
435 |
+
|
436 |
+
if self.pack_qkv:
|
437 |
+
self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True)
|
438 |
+
else:
|
439 |
+
self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
440 |
+
self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
441 |
+
self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
442 |
+
|
443 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
444 |
+
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
445 |
+
|
446 |
+
if use_memory_efficient_attention is None:
|
447 |
+
use_memory_efficient_attention = self.config.use_memory_efficient_attention
|
448 |
+
self.use_memory_efficient_attention = use_memory_efficient_attention
|
449 |
+
self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
|
450 |
+
if self.use_memory_efficient_attention:
|
451 |
+
assert self.memory_efficient_attention is not None, 'please install xformers'
|
452 |
+
if self.config.unpad_inputs:
|
453 |
+
assert self.config.use_memory_efficient_attention, 'unpad only with xformers'
|
454 |
+
|
455 |
+
def forward(
|
456 |
+
self,
|
457 |
+
hidden_states: torch.Tensor,
|
458 |
+
attention_bias: torch.FloatTensor,
|
459 |
+
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
460 |
+
attention_scale: Optional[torch.FloatTensor] = None,
|
461 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
462 |
+
output_attentions: Optional[bool] = False,
|
463 |
+
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
|
464 |
+
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
465 |
+
) -> Tuple[torch.Tensor, ...]:
|
466 |
+
shape_hd = (self.num_attention_heads, self.attention_head_size)
|
467 |
+
# qkv
|
468 |
+
if self.pack_qkv and qkv_inputs is None:
|
469 |
+
qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1)
|
470 |
+
else:
|
471 |
+
if qkv_inputs is None:
|
472 |
+
qkv_inputs = (hidden_states, hidden_states, hidden_states)
|
473 |
+
qkv_pack = [
|
474 |
+
getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv')
|
475 |
+
]
|
476 |
+
query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack]
|
477 |
+
|
478 |
+
if self.config.position_embedding_type == 'rope':
|
479 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds)
|
480 |
+
|
481 |
+
dtype = query_states.dtype
|
482 |
+
|
483 |
+
if self.config.logn_attention_scale and attention_scale is not None:
|
484 |
+
# https://kexue.fm/archives/8823
|
485 |
+
query_states = query_states * attention_scale.to(dtype)
|
486 |
+
|
487 |
+
if padding_inputs is not None:
|
488 |
+
query_states = pad_input(query_states.squeeze(), *padding_inputs)
|
489 |
+
key_states = pad_input(key_states.squeeze(), *padding_inputs)
|
490 |
+
value_states = pad_input(value_states.squeeze(), *padding_inputs)
|
491 |
+
|
492 |
+
if self.use_memory_efficient_attention:
|
493 |
+
assert self.memory_efficient_attention is not None, "xformers is not loaded"
|
494 |
+
assert output_attentions is False, "memory_efficient_attention do not output attentions"
|
495 |
+
assert head_mask is None, "Not support yet"
|
496 |
+
attention_probs = None
|
497 |
+
if torch.is_tensor(attention_bias):
|
498 |
+
attention_bias = attention_bias.to(dtype)
|
499 |
+
context_layer = self.memory_efficient_attention(
|
500 |
+
query_states,
|
501 |
+
key_states,
|
502 |
+
value_states,
|
503 |
+
attn_bias=attention_bias,
|
504 |
+
p=self.dropout.p
|
505 |
+
)
|
506 |
+
else:
|
507 |
+
context_layer = self._attention(query_states, key_states, value_states, attention_bias, head_mask)
|
508 |
+
|
509 |
+
if padding_inputs is not None:
|
510 |
+
context_layer = unpad_input(context_layer, indices=padding_inputs[0])
|
511 |
+
|
512 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
513 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
514 |
+
|
515 |
+
# output proj
|
516 |
+
attn_output = self.o_proj(context_layer)
|
517 |
+
|
518 |
+
# add attentions if we output them
|
519 |
+
outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
|
520 |
+
return outputs
|
521 |
+
|
522 |
+
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
|
523 |
+
"""
|
524 |
+
Args:
|
525 |
+
q/k/v: (B, L, n_head, head_dim),
|
526 |
+
Returns:
|
527 |
+
attn_output: (B L, n_head, head_dim)
|
528 |
+
"""
|
529 |
+
query_states = query_states.transpose(1, 2)
|
530 |
+
key_states = key_states.transpose(1, 2)
|
531 |
+
value_states = value_states.transpose(1, 2)
|
532 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
533 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
534 |
+
|
535 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
536 |
+
if attention_bias is not None:
|
537 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
538 |
+
attention_scores = attention_scores + attention_bias
|
539 |
+
|
540 |
+
# Normalize the attention scores to probabilities.
|
541 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
542 |
+
|
543 |
+
# This is actually dropping out entire tokens to attend to, which might
|
544 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
545 |
+
attention_probs = self.dropout(attention_probs)
|
546 |
+
|
547 |
+
# Mask heads if we want to
|
548 |
+
if head_mask is not None:
|
549 |
+
attention_probs = attention_probs * head_mask
|
550 |
+
|
551 |
+
context_layer = torch.matmul(attention_probs, value_states)
|
552 |
+
|
553 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
554 |
+
return context_layer
|
555 |
+
|
556 |
+
|
557 |
+
class NewSdpaAttention(NewAttention):
|
558 |
+
"""
|
559 |
+
New attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
560 |
+
`NewAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
561 |
+
SDPA API.
|
562 |
+
"""
|
563 |
+
def __init__(self, config: NewConfig, **kwargs):
|
564 |
+
super().__init__(config, **kwargs)
|
565 |
+
torch.backends.cuda.enable_mem_efficient_sdp(False)
|
566 |
+
logger.warning(
|
567 |
+
"Disable memory efficient attention kernel for `NewSdpaAttention`, you can set "
|
568 |
+
"`use_memory_efficient_attention=True` if it expected to use."
|
569 |
+
)
|
570 |
+
|
571 |
+
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
|
572 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
573 |
+
query_states.transpose(1, 2),
|
574 |
+
key_states.transpose(1, 2),
|
575 |
+
value_states.transpose(1, 2),
|
576 |
+
attn_mask=attention_bias,
|
577 |
+
dropout_p=self.dropout.p if self.training else 0.0,
|
578 |
+
)
|
579 |
+
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
|
580 |
+
return attn_output
|
581 |
+
|
582 |
+
|
583 |
+
NEW_ATTENTION_CLASSES = {
|
584 |
+
"eager": NewAttention,
|
585 |
+
# "flash_attention_2": , # TODO: xformers will dispatch to flash_attn
|
586 |
+
"sdpa": NewSdpaAttention,
|
587 |
+
}
|
588 |
+
|
589 |
+
|
590 |
+
class NewGatedMLP(nn.Module):
|
591 |
+
"""
|
592 |
+
GLU Variants Improve Transformer.
|
593 |
+
"""
|
594 |
+
|
595 |
+
def __init__(self, config: NewConfig):
|
596 |
+
super().__init__()
|
597 |
+
self.intermediate_size = config.intermediate_size
|
598 |
+
self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False)
|
599 |
+
self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True)
|
600 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
601 |
+
if config.hidden_dropout_prob > 0:
|
602 |
+
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
|
603 |
+
else:
|
604 |
+
self.hidden_dropout = None
|
605 |
+
|
606 |
+
def forward(self, hidden_states):
|
607 |
+
up_gate = self.up_gate_proj(hidden_states)
|
608 |
+
up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1)
|
609 |
+
gate = self.act_fn(gate)
|
610 |
+
gated_states = gate * up_states
|
611 |
+
if self.hidden_dropout is not None:
|
612 |
+
gated_states = self.hidden_dropout(gated_states)
|
613 |
+
down_states = self.down_proj(gated_states)
|
614 |
+
return down_states
|
615 |
+
|
616 |
+
|
617 |
+
class NewLayer(nn.Module):
|
618 |
+
def __init__(
|
619 |
+
self,
|
620 |
+
config: NewConfig,
|
621 |
+
pack_qkv=None,
|
622 |
+
use_memory_efficient_attention=None,
|
623 |
+
attn_implementation=None
|
624 |
+
):
|
625 |
+
super().__init__()
|
626 |
+
if attn_implementation is None:
|
627 |
+
attn_implementation = config._attn_implementation
|
628 |
+
if attn_implementation != 'eager':
|
629 |
+
use_memory_efficient_attention = False
|
630 |
+
self.attention = NEW_ATTENTION_CLASSES[attn_implementation](
|
631 |
+
config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
|
632 |
+
)
|
633 |
+
self.mlp = NewGatedMLP(config)
|
634 |
+
|
635 |
+
ln_class = LAYER_NORM[config.layer_norm_type]
|
636 |
+
self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
|
637 |
+
self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
|
638 |
+
|
639 |
+
if config.hidden_dropout_prob > 0:
|
640 |
+
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
|
641 |
+
else:
|
642 |
+
self.hidden_dropout = None
|
643 |
+
|
644 |
+
def forward(
|
645 |
+
self,
|
646 |
+
hidden_states: torch.Tensor,
|
647 |
+
attention_bias: torch.FloatTensor,
|
648 |
+
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
649 |
+
attention_scale: Optional[torch.FloatTensor] = None,
|
650 |
+
subset_indices: Optional[torch.LongTensor] = None,
|
651 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
652 |
+
output_attentions: Optional[bool] = False,
|
653 |
+
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
|
654 |
+
padding_inputs: Optional[Tuple] = None,
|
655 |
+
) -> Tuple[torch.Tensor, ...]:
|
656 |
+
# Multi head self attention
|
657 |
+
residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
|
658 |
+
attention_outputs = self.attention(
|
659 |
+
hidden_states,
|
660 |
+
attention_bias,
|
661 |
+
rope_embeds,
|
662 |
+
attention_scale,
|
663 |
+
head_mask,
|
664 |
+
output_attentions=output_attentions,
|
665 |
+
qkv_inputs=qkv_inputs,
|
666 |
+
padding_inputs=padding_inputs,
|
667 |
+
)
|
668 |
+
hidden_states = attention_outputs[0]
|
669 |
+
if self.hidden_dropout is not None:
|
670 |
+
hidden_states = self.hidden_dropout(hidden_states)
|
671 |
+
hidden_states = residual + hidden_states
|
672 |
+
|
673 |
+
# In pretraining, after the attention of last layer, we only need the masked tokens.
|
674 |
+
if subset_indices is not None:
|
675 |
+
hidden_states = hidden_states[subset_indices]
|
676 |
+
|
677 |
+
hidden_states = self.attn_ln(hidden_states)
|
678 |
+
|
679 |
+
# Fully Connected
|
680 |
+
residual = hidden_states
|
681 |
+
hidden_states = self.mlp(hidden_states)
|
682 |
+
if self.hidden_dropout is not None:
|
683 |
+
hidden_states = self.hidden_dropout(hidden_states)
|
684 |
+
hidden_states = residual + hidden_states
|
685 |
+
hidden_states = self.mlp_ln(hidden_states)
|
686 |
+
|
687 |
+
# add self attentions if we output attention weights
|
688 |
+
outputs = (hidden_states,) + attention_outputs[1:]
|
689 |
+
return outputs
|
690 |
+
|
691 |
+
|
692 |
+
class NewEncoder(nn.Module):
|
693 |
+
def __init__(self, config):
|
694 |
+
super().__init__()
|
695 |
+
self.config = config
|
696 |
+
self.layer = nn.ModuleList([NewLayer(config) for _ in range(config.num_hidden_layers)])
|
697 |
+
self.gradient_checkpointing = False
|
698 |
+
|
699 |
+
def forward(
|
700 |
+
self,
|
701 |
+
hidden_states: torch.Tensor,
|
702 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
703 |
+
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
704 |
+
attention_scale: Optional[torch.FloatTensor] = None,
|
705 |
+
subset_indices: Optional[torch.LongTensor] = None,
|
706 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
707 |
+
output_attentions: Optional[bool] = False,
|
708 |
+
output_hidden_states: Optional[bool] = False,
|
709 |
+
return_dict: Optional[bool] = True,
|
710 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
711 |
+
all_hidden_states = () if output_hidden_states else None
|
712 |
+
all_self_attentions = () if output_attentions else None
|
713 |
+
|
714 |
+
for i, layer_module in enumerate(self.layer):
|
715 |
+
if output_hidden_states:
|
716 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
717 |
+
|
718 |
+
if i >= len(self.layer) - 1:
|
719 |
+
layer_subset_indices = subset_indices
|
720 |
+
else:
|
721 |
+
layer_subset_indices = None
|
722 |
+
|
723 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
724 |
+
|
725 |
+
if self.gradient_checkpointing and self.training:
|
726 |
+
layer_outputs = self._gradient_checkpointing_func(
|
727 |
+
layer_module.__call__,
|
728 |
+
hidden_states,
|
729 |
+
attention_bias,
|
730 |
+
rope_embeds,
|
731 |
+
attention_scale,
|
732 |
+
layer_subset_indices,
|
733 |
+
layer_head_mask,
|
734 |
+
)
|
735 |
+
else:
|
736 |
+
layer_outputs = layer_module(
|
737 |
+
hidden_states,
|
738 |
+
attention_bias,
|
739 |
+
rope_embeds,
|
740 |
+
attention_scale,
|
741 |
+
layer_subset_indices,
|
742 |
+
layer_head_mask,
|
743 |
+
output_attentions,
|
744 |
+
)
|
745 |
+
|
746 |
+
hidden_states = layer_outputs[0]
|
747 |
+
if output_attentions:
|
748 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
749 |
+
|
750 |
+
if output_hidden_states:
|
751 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
752 |
+
|
753 |
+
if not return_dict:
|
754 |
+
return tuple(
|
755 |
+
v
|
756 |
+
for v in [
|
757 |
+
hidden_states,
|
758 |
+
all_hidden_states,
|
759 |
+
all_self_attentions,
|
760 |
+
]
|
761 |
+
if v is not None
|
762 |
+
)
|
763 |
+
return BaseModelOutput(
|
764 |
+
last_hidden_state=hidden_states,
|
765 |
+
hidden_states=all_hidden_states,
|
766 |
+
attentions=all_self_attentions,
|
767 |
+
)
|
768 |
+
|
769 |
+
|
770 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->New
|
771 |
+
class NewPooler(nn.Module):
|
772 |
+
def __init__(self, config):
|
773 |
+
super().__init__()
|
774 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
775 |
+
self.activation = nn.Tanh()
|
776 |
+
|
777 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
778 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
779 |
+
# to the first token.
|
780 |
+
first_token_tensor = hidden_states[:, 0]
|
781 |
+
pooled_output = self.dense(first_token_tensor)
|
782 |
+
pooled_output = self.activation(pooled_output)
|
783 |
+
return pooled_output
|
784 |
+
|
785 |
+
|
786 |
+
class NewPreTrainedModel(PreTrainedModel):
|
787 |
+
"""
|
788 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
789 |
+
models.
|
790 |
+
"""
|
791 |
+
|
792 |
+
config_class = NewConfig
|
793 |
+
base_model_prefix = "new"
|
794 |
+
supports_gradient_checkpointing = True
|
795 |
+
|
796 |
+
def _init_weights(self, module):
|
797 |
+
"""Initialize the weights"""
|
798 |
+
if isinstance(module, nn.Linear):
|
799 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
800 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
801 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
802 |
+
if module.bias is not None:
|
803 |
+
module.bias.data.zero_()
|
804 |
+
elif isinstance(module, nn.Embedding):
|
805 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
806 |
+
if module.padding_idx is not None:
|
807 |
+
module.weight.data[module.padding_idx].zero_()
|
808 |
+
elif isinstance(module, nn.LayerNorm):
|
809 |
+
module.bias.data.zero_()
|
810 |
+
module.weight.data.fill_(1.0)
|
811 |
+
|
812 |
+
|
813 |
+
class NewModel(NewPreTrainedModel):
|
814 |
+
"""
|
815 |
+
The bare New Model transformer outputting raw hidden-states without any specific head on top.
|
816 |
+
"""
|
817 |
+
|
818 |
+
def __init__(self, config: NewConfig, add_pooling_layer=False):
|
819 |
+
super().__init__(config)
|
820 |
+
self.config = config
|
821 |
+
|
822 |
+
self.embeddings = NewEmbeddings(config)
|
823 |
+
self.encoder = NewEncoder(config)
|
824 |
+
|
825 |
+
self.pooler = NewPooler(config) if add_pooling_layer else None
|
826 |
+
|
827 |
+
# Initialize weights and apply final processing
|
828 |
+
self.post_init()
|
829 |
+
|
830 |
+
def get_input_embeddings(self):
|
831 |
+
return self.embeddings.word_embeddings
|
832 |
+
|
833 |
+
def set_input_embeddings(self, value):
|
834 |
+
self.embeddings.word_embeddings = value
|
835 |
+
|
836 |
+
def forward(
|
837 |
+
self,
|
838 |
+
input_ids: Optional[torch.Tensor] = None,
|
839 |
+
attention_mask: Optional[torch.Tensor] = None,
|
840 |
+
length: Optional[List[int]] = None,
|
841 |
+
subset_indices: Optional[torch.LongTensor] = None,
|
842 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
843 |
+
position_ids: Optional[torch.Tensor] = None,
|
844 |
+
head_mask: Optional[torch.Tensor] = None,
|
845 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
846 |
+
output_attentions: Optional[bool] = None,
|
847 |
+
output_hidden_states: Optional[bool] = None,
|
848 |
+
return_dict: Optional[bool] = None,
|
849 |
+
unpad_inputs: Optional[bool] = None,
|
850 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
|
851 |
+
r"""
|
852 |
+
length (`list` of length `batch_size`, *optional*):
|
853 |
+
If is `None`, return padded `last_hidden_state`.
|
854 |
+
subset_indices ():
|
855 |
+
pass
|
856 |
+
unpad_inputs (`bool`, *optional*):
|
857 |
+
pass
|
858 |
+
"""
|
859 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
860 |
+
output_hidden_states = (
|
861 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
862 |
+
)
|
863 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
864 |
+
unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs
|
865 |
+
output_padded = length is None
|
866 |
+
|
867 |
+
if input_ids is not None and inputs_embeds is not None:
|
868 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
869 |
+
elif input_ids is not None:
|
870 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
871 |
+
input_shape = input_ids.size()
|
872 |
+
elif inputs_embeds is not None:
|
873 |
+
input_shape = inputs_embeds.size()[:-1]
|
874 |
+
else:
|
875 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
876 |
+
|
877 |
+
# TODO: not used
|
878 |
+
# # Prepare head mask if needed
|
879 |
+
# # 1.0 in head_mask indicate we keep the head
|
880 |
+
# # attention_probs has shape bsz x n_heads x N x N
|
881 |
+
# # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
882 |
+
# # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
883 |
+
# head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
884 |
+
|
885 |
+
# Get embeddings, may unpad them
|
886 |
+
(embedding_output, attention_mask, rope_embeds, length) = self.embeddings(
|
887 |
+
unpad_inputs,
|
888 |
+
input_ids=input_ids,
|
889 |
+
attention_mask=attention_mask,
|
890 |
+
length=length,
|
891 |
+
token_type_ids=token_type_ids,
|
892 |
+
position_ids=position_ids,
|
893 |
+
inputs_embeds=inputs_embeds
|
894 |
+
)
|
895 |
+
|
896 |
+
batch_size, seq_length = input_shape
|
897 |
+
|
898 |
+
if unpad_inputs:
|
899 |
+
assert self.config.use_memory_efficient_attention
|
900 |
+
attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length)
|
901 |
+
else:
|
902 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
903 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
904 |
+
attention_bias = self.get_extended_attention_mask(attention_mask, input_shape)
|
905 |
+
if self.config.use_memory_efficient_attention:
|
906 |
+
# Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
|
907 |
+
attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
|
908 |
+
|
909 |
+
if self.config.logn_attention_scale:
|
910 |
+
# attention scale log_512(input_len)
|
911 |
+
attention_scale = attention_mask.sum(1).log() / torch.tensor(self.config.max_position_embeddings).log()
|
912 |
+
# inference-time logn scale need clip 1
|
913 |
+
if self.config.logn_attention_clip1:
|
914 |
+
attention_scale.clip_(1)
|
915 |
+
attention_scale = attention_scale[:, None, None, None]
|
916 |
+
else:
|
917 |
+
attention_scale = None
|
918 |
+
|
919 |
+
encoder_outputs = self.encoder(
|
920 |
+
embedding_output,
|
921 |
+
attention_bias=attention_bias,
|
922 |
+
rope_embeds=rope_embeds,
|
923 |
+
attention_scale=attention_scale,
|
924 |
+
subset_indices=subset_indices,
|
925 |
+
head_mask=head_mask,
|
926 |
+
output_attentions=output_attentions,
|
927 |
+
output_hidden_states=output_hidden_states,
|
928 |
+
return_dict=return_dict,
|
929 |
+
)
|
930 |
+
sequence_output = encoder_outputs[0]
|
931 |
+
if unpad_inputs and output_padded:
|
932 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
933 |
+
sequence_output = pad_input(
|
934 |
+
sequence_output.squeeze(), indices, batch_size, seq_length
|
935 |
+
)
|
936 |
+
|
937 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
938 |
+
|
939 |
+
if not return_dict:
|
940 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
941 |
+
|
942 |
+
return BaseModelOutputWithPooling(
|
943 |
+
last_hidden_state=sequence_output,
|
944 |
+
pooler_output=pooled_output,
|
945 |
+
hidden_states=encoder_outputs.hidden_states,
|
946 |
+
attentions=encoder_outputs.attentions,
|
947 |
+
)
|
948 |
+
|
949 |
+
|
950 |
+
class NewLMPredictionHead(nn.Module):
|
951 |
+
def __init__(self, config):
|
952 |
+
super().__init__()
|
953 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
954 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
955 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
956 |
+
|
957 |
+
# The output weights are the same as the input embeddings, but there is
|
958 |
+
# an output-only bias for each token.
|
959 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
960 |
+
|
961 |
+
def forward(self, hidden_states):
|
962 |
+
hidden_states = self.dense(hidden_states)
|
963 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
964 |
+
hidden_states = self.norm(hidden_states)
|
965 |
+
hidden_states = self.decoder(hidden_states)
|
966 |
+
return hidden_states
|
967 |
+
|
968 |
+
|
969 |
+
class NewForMaskedLM(NewPreTrainedModel):
|
970 |
+
_tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"]
|
971 |
+
|
972 |
+
def __init__(self, config: NewConfig):
|
973 |
+
super().__init__(config)
|
974 |
+
self.new = NewModel(config, add_pooling_layer=False)
|
975 |
+
self.lm_head = NewLMPredictionHead(config)
|
976 |
+
self.loss_fct = nn.CrossEntropyLoss()
|
977 |
+
|
978 |
+
self.pretraining = True
|
979 |
+
|
980 |
+
# Initialize weights and apply final processing
|
981 |
+
self.post_init()
|
982 |
+
|
983 |
+
def get_output_embeddings(self):
|
984 |
+
return self.lm_head.decoder
|
985 |
+
|
986 |
+
def set_output_embeddings(self, new_embeddings):
|
987 |
+
self.lm_head.decoder = new_embeddings
|
988 |
+
|
989 |
+
def forward(
|
990 |
+
self,
|
991 |
+
input_ids: Optional[torch.Tensor] = None,
|
992 |
+
attention_mask: Optional[torch.Tensor] = None,
|
993 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
994 |
+
position_ids: Optional[torch.Tensor] = None,
|
995 |
+
head_mask: Optional[torch.Tensor] = None,
|
996 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
997 |
+
labels: Optional[torch.Tensor] = None,
|
998 |
+
output_attentions: Optional[bool] = None,
|
999 |
+
output_hidden_states: Optional[bool] = None,
|
1000 |
+
return_dict: Optional[bool] = None,
|
1001 |
+
unpad_inputs: Optional[bool] = None,
|
1002 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1003 |
+
r"""
|
1004 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1005 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1006 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1007 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1008 |
+
"""
|
1009 |
+
|
1010 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1011 |
+
|
1012 |
+
if labels is None:
|
1013 |
+
length = None
|
1014 |
+
subset_indices = None
|
1015 |
+
else:
|
1016 |
+
length = attention_mask.sum(-1).tolist()
|
1017 |
+
labels = labels[attention_mask.bool()].unsqueeze(0)
|
1018 |
+
subset_indices = labels > -100 if self.pretraining else None
|
1019 |
+
|
1020 |
+
outputs = self.new(
|
1021 |
+
input_ids,
|
1022 |
+
attention_mask=attention_mask,
|
1023 |
+
length=length,
|
1024 |
+
subset_indices=subset_indices,
|
1025 |
+
token_type_ids=token_type_ids,
|
1026 |
+
position_ids=position_ids,
|
1027 |
+
head_mask=head_mask,
|
1028 |
+
inputs_embeds=inputs_embeds,
|
1029 |
+
output_attentions=output_attentions,
|
1030 |
+
output_hidden_states=output_hidden_states,
|
1031 |
+
return_dict=return_dict,
|
1032 |
+
unpad_inputs=unpad_inputs,
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
sequence_output = outputs[0]
|
1036 |
+
prediction_scores = self.lm_head(sequence_output)
|
1037 |
+
|
1038 |
+
masked_lm_loss = None
|
1039 |
+
if labels is not None:
|
1040 |
+
labels = labels[subset_indices]
|
1041 |
+
masked_lm_loss = self.loss_fct(prediction_scores, labels)
|
1042 |
+
|
1043 |
+
if not return_dict:
|
1044 |
+
output = (prediction_scores,) + outputs[2:]
|
1045 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1046 |
+
|
1047 |
+
return MaskedLMOutput(
|
1048 |
+
loss=masked_lm_loss,
|
1049 |
+
logits=prediction_scores,
|
1050 |
+
hidden_states=outputs.hidden_states,
|
1051 |
+
attentions=outputs.attentions,
|
1052 |
+
)
|
1053 |
+
|
1054 |
+
|
1055 |
+
class NewForSequenceClassification(NewPreTrainedModel):
|
1056 |
+
def __init__(self, config):
|
1057 |
+
super().__init__(config)
|
1058 |
+
self.num_labels = config.num_labels
|
1059 |
+
self.config = config
|
1060 |
+
|
1061 |
+
self.new = NewModel(config, add_pooling_layer=True)
|
1062 |
+
classifier_dropout = (
|
1063 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1064 |
+
)
|
1065 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1066 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1067 |
+
|
1068 |
+
# Initialize weights and apply final processing
|
1069 |
+
self.post_init()
|
1070 |
+
|
1071 |
+
def forward(
|
1072 |
+
self,
|
1073 |
+
input_ids: Optional[torch.Tensor] = None,
|
1074 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1075 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1076 |
+
position_ids: Optional[torch.Tensor] = None,
|
1077 |
+
head_mask: Optional[torch.Tensor] = None,
|
1078 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1079 |
+
labels: Optional[torch.Tensor] = None,
|
1080 |
+
output_attentions: Optional[bool] = None,
|
1081 |
+
output_hidden_states: Optional[bool] = None,
|
1082 |
+
return_dict: Optional[bool] = None,
|
1083 |
+
unpad_inputs: Optional[bool] = None,
|
1084 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1085 |
+
r"""
|
1086 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1087 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1088 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1089 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1090 |
+
"""
|
1091 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1092 |
+
|
1093 |
+
outputs = self.new(
|
1094 |
+
input_ids,
|
1095 |
+
attention_mask=attention_mask,
|
1096 |
+
token_type_ids=token_type_ids,
|
1097 |
+
position_ids=position_ids,
|
1098 |
+
head_mask=head_mask,
|
1099 |
+
inputs_embeds=inputs_embeds,
|
1100 |
+
output_attentions=output_attentions,
|
1101 |
+
output_hidden_states=output_hidden_states,
|
1102 |
+
return_dict=return_dict,
|
1103 |
+
unpad_inputs=unpad_inputs,
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
pooled_output = outputs[1]
|
1107 |
+
|
1108 |
+
pooled_output = self.dropout(pooled_output)
|
1109 |
+
logits = self.classifier(pooled_output)
|
1110 |
+
|
1111 |
+
loss = None
|
1112 |
+
if labels is not None:
|
1113 |
+
if self.config.problem_type is None:
|
1114 |
+
if self.num_labels == 1:
|
1115 |
+
self.config.problem_type = "regression"
|
1116 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1117 |
+
self.config.problem_type = "single_label_classification"
|
1118 |
+
else:
|
1119 |
+
self.config.problem_type = "multi_label_classification"
|
1120 |
+
|
1121 |
+
if self.config.problem_type == "regression":
|
1122 |
+
loss_fct = nn.MSELoss()
|
1123 |
+
if self.num_labels == 1:
|
1124 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1125 |
+
else:
|
1126 |
+
loss = loss_fct(logits, labels)
|
1127 |
+
elif self.config.problem_type == "single_label_classification":
|
1128 |
+
loss_fct = nn.CrossEntropyLoss()
|
1129 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1130 |
+
elif self.config.problem_type == "multi_label_classification":
|
1131 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1132 |
+
loss = loss_fct(logits, labels)
|
1133 |
+
|
1134 |
+
if not return_dict:
|
1135 |
+
output = (logits,) + outputs[2:]
|
1136 |
+
return ((loss,) + output) if loss is not None else output
|
1137 |
+
|
1138 |
+
return SequenceClassifierOutput(
|
1139 |
+
loss=loss,
|
1140 |
+
logits=logits,
|
1141 |
+
hidden_states=outputs.hidden_states,
|
1142 |
+
attentions=outputs.attentions,
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
|
1146 |
+
class NewForMultipleChoice(NewPreTrainedModel):
|
1147 |
+
def __init__(self, config):
|
1148 |
+
super().__init__(config)
|
1149 |
+
|
1150 |
+
self.new = NewModel(config, add_pooling_layer=True)
|
1151 |
+
classifier_dropout = (
|
1152 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1153 |
+
)
|
1154 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1155 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1156 |
+
|
1157 |
+
# Initialize weights and apply final processing
|
1158 |
+
self.post_init()
|
1159 |
+
|
1160 |
+
def forward(
|
1161 |
+
self,
|
1162 |
+
input_ids: Optional[torch.Tensor] = None,
|
1163 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1164 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1165 |
+
position_ids: Optional[torch.Tensor] = None,
|
1166 |
+
head_mask: Optional[torch.Tensor] = None,
|
1167 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1168 |
+
labels: Optional[torch.Tensor] = None,
|
1169 |
+
output_attentions: Optional[bool] = None,
|
1170 |
+
output_hidden_states: Optional[bool] = None,
|
1171 |
+
return_dict: Optional[bool] = None,
|
1172 |
+
unpad_inputs: Optional[bool] = None,
|
1173 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1174 |
+
r"""
|
1175 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1176 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1177 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1178 |
+
`input_ids` above)
|
1179 |
+
"""
|
1180 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1181 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1182 |
+
|
1183 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1184 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1185 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1186 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1187 |
+
inputs_embeds = (
|
1188 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1189 |
+
if inputs_embeds is not None
|
1190 |
+
else None
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
outputs = self.new(
|
1194 |
+
input_ids,
|
1195 |
+
attention_mask=attention_mask,
|
1196 |
+
token_type_ids=token_type_ids,
|
1197 |
+
position_ids=position_ids,
|
1198 |
+
head_mask=head_mask,
|
1199 |
+
inputs_embeds=inputs_embeds,
|
1200 |
+
output_attentions=output_attentions,
|
1201 |
+
output_hidden_states=output_hidden_states,
|
1202 |
+
return_dict=return_dict,
|
1203 |
+
unpad_inputs=unpad_inputs,
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
pooled_output = outputs[1]
|
1207 |
+
|
1208 |
+
pooled_output = self.dropout(pooled_output)
|
1209 |
+
logits = self.classifier(pooled_output)
|
1210 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1211 |
+
|
1212 |
+
loss = None
|
1213 |
+
if labels is not None:
|
1214 |
+
loss_fct = nn.CrossEntropyLoss()
|
1215 |
+
loss = loss_fct(reshaped_logits, labels)
|
1216 |
+
|
1217 |
+
if not return_dict:
|
1218 |
+
output = (reshaped_logits,) + outputs[2:]
|
1219 |
+
return ((loss,) + output) if loss is not None else output
|
1220 |
+
|
1221 |
+
return MultipleChoiceModelOutput(
|
1222 |
+
loss=loss,
|
1223 |
+
logits=reshaped_logits,
|
1224 |
+
hidden_states=outputs.hidden_states,
|
1225 |
+
attentions=outputs.attentions,
|
1226 |
+
)
|
1227 |
+
|
1228 |
+
|
1229 |
+
class NewForTokenClassification(NewPreTrainedModel):
|
1230 |
+
def __init__(self, config):
|
1231 |
+
super().__init__(config)
|
1232 |
+
self.num_labels = config.num_labels
|
1233 |
+
|
1234 |
+
self.new = NewModel(config, add_pooling_layer=False)
|
1235 |
+
classifier_dropout = (
|
1236 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1237 |
+
)
|
1238 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1239 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1240 |
+
|
1241 |
+
# Initialize weights and apply final processing
|
1242 |
+
self.post_init()
|
1243 |
+
|
1244 |
+
def forward(
|
1245 |
+
self,
|
1246 |
+
input_ids: Optional[torch.Tensor] = None,
|
1247 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1248 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1249 |
+
position_ids: Optional[torch.Tensor] = None,
|
1250 |
+
head_mask: Optional[torch.Tensor] = None,
|
1251 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1252 |
+
labels: Optional[torch.Tensor] = None,
|
1253 |
+
output_attentions: Optional[bool] = None,
|
1254 |
+
output_hidden_states: Optional[bool] = None,
|
1255 |
+
return_dict: Optional[bool] = None,
|
1256 |
+
unpad_inputs: Optional[bool] = None,
|
1257 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1258 |
+
r"""
|
1259 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1260 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1261 |
+
"""
|
1262 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1263 |
+
|
1264 |
+
outputs = self.new(
|
1265 |
+
input_ids,
|
1266 |
+
attention_mask=attention_mask,
|
1267 |
+
token_type_ids=token_type_ids,
|
1268 |
+
position_ids=position_ids,
|
1269 |
+
head_mask=head_mask,
|
1270 |
+
inputs_embeds=inputs_embeds,
|
1271 |
+
output_attentions=output_attentions,
|
1272 |
+
output_hidden_states=output_hidden_states,
|
1273 |
+
return_dict=return_dict,
|
1274 |
+
unpad_inputs=unpad_inputs,
|
1275 |
+
)
|
1276 |
+
|
1277 |
+
sequence_output = outputs[0]
|
1278 |
+
|
1279 |
+
sequence_output = self.dropout(sequence_output)
|
1280 |
+
logits = self.classifier(sequence_output)
|
1281 |
+
|
1282 |
+
loss = None
|
1283 |
+
if labels is not None:
|
1284 |
+
loss_fct = nn.CrossEntropyLoss()
|
1285 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1286 |
+
|
1287 |
+
if not return_dict:
|
1288 |
+
output = (logits,) + outputs[2:]
|
1289 |
+
return ((loss,) + output) if loss is not None else output
|
1290 |
+
|
1291 |
+
return TokenClassifierOutput(
|
1292 |
+
loss=loss,
|
1293 |
+
logits=logits,
|
1294 |
+
hidden_states=outputs.hidden_states,
|
1295 |
+
attentions=outputs.attentions,
|
1296 |
+
)
|
1297 |
+
|
1298 |
+
|
1299 |
+
class NewForQuestionAnswering(NewPreTrainedModel):
|
1300 |
+
def __init__(self, config):
|
1301 |
+
super().__init__(config)
|
1302 |
+
self.num_labels = config.num_labels
|
1303 |
+
|
1304 |
+
self.new = NewModel(config, add_pooling_layer=False)
|
1305 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1306 |
+
|
1307 |
+
# Initialize weights and apply final processing
|
1308 |
+
self.post_init()
|
1309 |
+
|
1310 |
+
def forward(
|
1311 |
+
self,
|
1312 |
+
input_ids: Optional[torch.Tensor] = None,
|
1313 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1314 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1315 |
+
position_ids: Optional[torch.Tensor] = None,
|
1316 |
+
head_mask: Optional[torch.Tensor] = None,
|
1317 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1318 |
+
start_positions: Optional[torch.Tensor] = None,
|
1319 |
+
end_positions: Optional[torch.Tensor] = None,
|
1320 |
+
output_attentions: Optional[bool] = None,
|
1321 |
+
output_hidden_states: Optional[bool] = None,
|
1322 |
+
return_dict: Optional[bool] = None,
|
1323 |
+
unpad_inputs: Optional[bool] = None,
|
1324 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1325 |
+
r"""
|
1326 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1327 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1328 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1329 |
+
are not taken into account for computing the loss.
|
1330 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1331 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1332 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1333 |
+
are not taken into account for computing the loss.
|
1334 |
+
"""
|
1335 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1336 |
+
|
1337 |
+
outputs = self.new(
|
1338 |
+
input_ids,
|
1339 |
+
attention_mask=attention_mask,
|
1340 |
+
token_type_ids=token_type_ids,
|
1341 |
+
position_ids=position_ids,
|
1342 |
+
head_mask=head_mask,
|
1343 |
+
inputs_embeds=inputs_embeds,
|
1344 |
+
output_attentions=output_attentions,
|
1345 |
+
output_hidden_states=output_hidden_states,
|
1346 |
+
return_dict=return_dict,
|
1347 |
+
unpad_inputs=unpad_inputs,
|
1348 |
+
)
|
1349 |
+
|
1350 |
+
sequence_output = outputs[0]
|
1351 |
+
|
1352 |
+
logits = self.qa_outputs(sequence_output)
|
1353 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1354 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1355 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1356 |
+
|
1357 |
+
total_loss = None
|
1358 |
+
if start_positions is not None and end_positions is not None:
|
1359 |
+
# If we are on multi-GPU, split add a dimension
|
1360 |
+
if len(start_positions.size()) > 1:
|
1361 |
+
start_positions = start_positions.squeeze(-1)
|
1362 |
+
if len(end_positions.size()) > 1:
|
1363 |
+
end_positions = end_positions.squeeze(-1)
|
1364 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1365 |
+
ignored_index = start_logits.size(1)
|
1366 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1367 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1368 |
+
|
1369 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
|
1370 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1371 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1372 |
+
total_loss = (start_loss + end_loss) / 2
|
1373 |
+
|
1374 |
+
if not return_dict:
|
1375 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1376 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1377 |
+
|
1378 |
+
return QuestionAnsweringModelOutput(
|
1379 |
+
loss=total_loss,
|
1380 |
+
start_logits=start_logits,
|
1381 |
+
end_logits=end_logits,
|
1382 |
+
hidden_states=outputs.hidden_states,
|
1383 |
+
attentions=outputs.attentions,
|
1384 |
+
)
|