djagatiya commited on
Commit
b38757a
1 Parent(s): f4e40be

model added.

Browse files
config.json ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-cased",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "O",
14
+ "1": "B-PERSON",
15
+ "2": "I-PERSON",
16
+ "3": "B-NORP",
17
+ "4": "I-NORP",
18
+ "5": "B-FAC",
19
+ "6": "I-FAC",
20
+ "7": "B-ORG",
21
+ "8": "I-ORG",
22
+ "9": "B-GPE",
23
+ "10": "I-GPE",
24
+ "11": "B-LOC",
25
+ "12": "I-LOC",
26
+ "13": "B-PRODUCT",
27
+ "14": "I-PRODUCT",
28
+ "15": "B-DATE",
29
+ "16": "I-DATE",
30
+ "17": "B-TIME",
31
+ "18": "I-TIME",
32
+ "19": "B-PERCENT",
33
+ "20": "I-PERCENT",
34
+ "21": "B-MONEY",
35
+ "22": "I-MONEY",
36
+ "23": "B-QUANTITY",
37
+ "24": "I-QUANTITY",
38
+ "25": "B-ORDINAL",
39
+ "26": "I-ORDINAL",
40
+ "27": "B-CARDINAL",
41
+ "28": "I-CARDINAL",
42
+ "29": "B-EVENT",
43
+ "30": "I-EVENT",
44
+ "31": "B-WORK_OF_ART",
45
+ "32": "I-WORK_OF_ART",
46
+ "33": "B-LAW",
47
+ "34": "I-LAW",
48
+ "35": "B-LANGUAGE",
49
+ "36": "I-LANGUAGE"
50
+ },
51
+ "initializer_range": 0.02,
52
+ "intermediate_size": 3072,
53
+ "label2id": {
54
+ "B-CARDINAL": 27,
55
+ "B-DATE": 15,
56
+ "B-EVENT": 29,
57
+ "B-FAC": 5,
58
+ "B-GPE": 9,
59
+ "B-LANGUAGE": 35,
60
+ "B-LAW": 33,
61
+ "B-LOC": 11,
62
+ "B-MONEY": 21,
63
+ "B-NORP": 3,
64
+ "B-ORDINAL": 25,
65
+ "B-ORG": 7,
66
+ "B-PERCENT": 19,
67
+ "B-PERSON": 1,
68
+ "B-PRODUCT": 13,
69
+ "B-QUANTITY": 23,
70
+ "B-TIME": 17,
71
+ "B-WORK_OF_ART": 31,
72
+ "I-CARDINAL": 28,
73
+ "I-DATE": 16,
74
+ "I-EVENT": 30,
75
+ "I-FAC": 6,
76
+ "I-GPE": 10,
77
+ "I-LANGUAGE": 36,
78
+ "I-LAW": 34,
79
+ "I-LOC": 12,
80
+ "I-MONEY": 22,
81
+ "I-NORP": 4,
82
+ "I-ORDINAL": 26,
83
+ "I-ORG": 8,
84
+ "I-PERCENT": 20,
85
+ "I-PERSON": 2,
86
+ "I-PRODUCT": 14,
87
+ "I-QUANTITY": 24,
88
+ "I-TIME": 18,
89
+ "I-WORK_OF_ART": 32,
90
+ "O": 0
91
+ },
92
+ "layer_norm_eps": 1e-12,
93
+ "max_position_embeddings": 512,
94
+ "model_type": "bert",
95
+ "num_attention_heads": 12,
96
+ "num_hidden_layers": 12,
97
+ "pad_token_id": 0,
98
+ "position_embedding_type": "absolute",
99
+ "torch_dtype": "float32",
100
+ "transformers_version": "4.20.0",
101
+ "type_vocab_size": 2,
102
+ "use_cache": true,
103
+ "vocab_size": 28996
104
+ }
eval.log ADDED
@@ -0,0 +1,493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2022-07-03 16:16:30,561 - __main__ - INFO - Label List:['O', 'B-PERSON', 'I-PERSON', 'B-NORP', 'I-NORP', 'B-FAC', 'I-FAC', 'B-ORG', 'I-ORG', 'B-GPE', 'I-GPE', 'B-LOC', 'I-LOC', 'B-PRODUCT', 'I-PRODUCT', 'B-DATE', 'I-DATE', 'B-TIME', 'I-TIME', 'B-PERCENT', 'I-PERCENT', 'B-MONEY', 'I-MONEY', 'B-QUANTITY', 'I-QUANTITY', 'B-ORDINAL', 'I-ORDINAL', 'B-CARDINAL', 'I-CARDINAL', 'B-EVENT', 'I-EVENT', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'B-LAW', 'I-LAW', 'B-LANGUAGE', 'I-LANGUAGE']
2
+ 2022-07-03 16:16:36,880 - __main__ - INFO - Dataset({
3
+ features: ['id', 'words', 'ner_tags'],
4
+ num_rows: 75187
5
+ })
6
+ 2022-07-03 16:16:37,627 - __main__ - INFO - Dataset({
7
+ features: ['id', 'words', 'ner_tags'],
8
+ num_rows: 9479
9
+ })
10
+ 2022-07-03 16:16:37,629 - transformers.tokenization_utils_base - INFO - Didn't find file models/bert-base-cased_1656837168.84538/checkpoint-14100/added_tokens.json. We won't load it.
11
+ 2022-07-03 16:16:37,631 - transformers.tokenization_utils_base - INFO - loading file models/bert-base-cased_1656837168.84538/checkpoint-14100/vocab.txt
12
+ 2022-07-03 16:16:37,631 - transformers.tokenization_utils_base - INFO - loading file models/bert-base-cased_1656837168.84538/checkpoint-14100/tokenizer.json
13
+ 2022-07-03 16:16:37,631 - transformers.tokenization_utils_base - INFO - loading file None
14
+ 2022-07-03 16:16:37,631 - transformers.tokenization_utils_base - INFO - loading file models/bert-base-cased_1656837168.84538/checkpoint-14100/special_tokens_map.json
15
+ 2022-07-03 16:16:37,632 - transformers.tokenization_utils_base - INFO - loading file models/bert-base-cased_1656837168.84538/checkpoint-14100/tokenizer_config.json
16
+ 2022-07-03 16:16:37,649 - __main__ - INFO - {'input_ids': [[101, 1327, 1912, 1104, 2962, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1284, 4161, 5834, 13967, 1128, 1106, 2824, 170, 1957, 2596, 1104, 14754, 1975, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 160, 2924, 1563, 18405, 1116, 1113, 1103, 2038, 2746, 1104, 1975, 131, 21342, 19917, 1104, 16191, 17204, 3757, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 9996, 3543, 1113, 16191, 17204, 3757, 1110, 1103, 12267, 1106, 1103, 15090, 3391, 1116, 17354, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1135, 1110, 2766, 1104, 170, 2425, 188, 7854, 1162, 117, 3718, 188, 7854, 1279, 117, 170, 3321, 1668, 7115, 1105, 25973, 3590, 117, 1105, 1103, 2038, 6250, 117, 1621, 1168, 1614, 119, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
17
+ 2022-07-03 16:16:37,649 - __main__ - INFO - ['[CLS]', 'What', 'kind', 'of', 'memory', '?', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
18
+ 2022-07-03 16:16:37,651 - __main__ - INFO - ['[CLS]', 'We', 'respect', '##fully', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'Across', 'China', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
19
+ 2022-07-03 16:16:37,651 - __main__ - INFO - ['[CLS]', 'W', '##W', 'II', 'Landmark', '##s', 'on', 'the', 'Great', 'Earth', 'of', 'China', ':', 'Eternal', 'Memories', 'of', 'Tai', '##hang', 'Mountain', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
20
+ 2022-07-03 16:16:37,652 - __main__ - INFO - ['[CLS]', 'Standing', 'tall', 'on', 'Tai', '##hang', 'Mountain', 'is', 'the', 'Monument', 'to', 'the', 'Hundred', 'Regiment', '##s', 'Offensive', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
21
+ 2022-07-03 16:16:37,652 - __main__ - INFO - ['[CLS]', 'It', 'is', 'composed', 'of', 'a', 'primary', 's', '##tel', '##e', ',', 'secondary', 's', '##tel', '##es', ',', 'a', 'huge', 'round', 'sculpture', 'and', 'beacon', 'tower', ',', 'and', 'the', 'Great', 'Wall', ',', 'among', 'other', 'things', '.', '[SEP]']
22
+ 2022-07-03 16:16:37,652 - __main__ - INFO - -------------
23
+ 2022-07-03 16:16:37,653 - __main__ - INFO - ['[CLS]', 'We', 'respect', '##fully', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'Across', 'China', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
24
+ 2022-07-03 16:16:37,653 - __main__ - INFO - [None, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None]
25
+ 2022-07-03 16:16:37,656 - datasets.fingerprint - WARNING - Parameter 'function'=<function tokenize_and_align_labels at 0x7f4e0440bee0> of the transform datasets.arrow_dataset.Dataset._map_single couldn't be hashed properly, a random hash was used instead. Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. This warning is only showed once. Subsequent hashing failures won't be showed.
26
+ 2022-07-03 16:16:42,938 - __main__ - INFO - {'id': [0, 1, 2, 3, 4], 'words': [['What', 'kind', 'of', 'memory', '?'], ['We', 'respectfully', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'Across', 'China', '.'], ['WW', 'II', 'Landmarks', 'on', 'the', 'Great', 'Earth', 'of', 'China', ':', 'Eternal', 'Memories', 'of', 'Taihang', 'Mountain'], ['Standing', 'tall', 'on', 'Taihang', 'Mountain', 'is', 'the', 'Monument', 'to', 'the', 'Hundred', 'Regiments', 'Offensive', '.'], ['It', 'is', 'composed', 'of', 'a', 'primary', 'stele', ',', 'secondary', 'steles', ',', 'a', 'huge', 'round', 'sculpture', 'and', 'beacon', 'tower', ',', 'and', 'the', 'Great', 'Wall', ',', 'among', 'other', 'things', '.']], 'ner_tags': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0], [31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32], [0, 0, 0, 11, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0]], 'input_ids': [[101, 1327, 1912, 1104, 2962, 136, 102], [101, 1284, 4161, 5834, 13967, 1128, 1106, 2824, 170, 1957, 2596, 1104, 14754, 1975, 119, 102], [101, 160, 2924, 1563, 18405, 1116, 1113, 1103, 2038, 2746, 1104, 1975, 131, 21342, 19917, 1104, 16191, 17204, 3757, 102], [101, 9996, 3543, 1113, 16191, 17204, 3757, 1110, 1103, 12267, 1106, 1103, 15090, 3391, 1116, 17354, 119, 102], [101, 1135, 1110, 2766, 1104, 170, 2425, 188, 7854, 1162, 117, 3718, 188, 7854, 1279, 117, 170, 3321, 1668, 7115, 1105, 25973, 3590, 117, 1105, 1103, 2038, 6250, 117, 1621, 1168, 1614, 119, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'labels': [[-100, 0, 0, 0, 0, 0, -100], [-100, 0, 0, -100, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, -100], [-100, 31, -100, 32, 32, -100, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, -100, 32, -100], [-100, 0, 0, 0, 11, -100, 12, 0, 31, 32, 32, 32, 32, 32, -100, 32, 0, -100], [-100, 0, 0, 0, 0, 0, 0, 0, -100, -100, 0, 0, 0, -100, -100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0, -100]]}
27
+ 2022-07-03 16:16:45,238 - transformers.configuration_utils - INFO - loading configuration file models/bert-base-cased_1656837168.84538/checkpoint-14100/config.json
28
+ 2022-07-03 16:16:45,241 - transformers.configuration_utils - INFO - Model config BertConfig {
29
+ "_name_or_path": "models/bert-base-cased_1656837168.84538/checkpoint-14100",
30
+ "architectures": [
31
+ "BertForTokenClassification"
32
+ ],
33
+ "attention_probs_dropout_prob": 0.1,
34
+ "classifier_dropout": null,
35
+ "gradient_checkpointing": false,
36
+ "hidden_act": "gelu",
37
+ "hidden_dropout_prob": 0.1,
38
+ "hidden_size": 768,
39
+ "id2label": {
40
+ "0": "O",
41
+ "1": "B-PERSON",
42
+ "2": "I-PERSON",
43
+ "3": "B-NORP",
44
+ "4": "I-NORP",
45
+ "5": "B-FAC",
46
+ "6": "I-FAC",
47
+ "7": "B-ORG",
48
+ "8": "I-ORG",
49
+ "9": "B-GPE",
50
+ "10": "I-GPE",
51
+ "11": "B-LOC",
52
+ "12": "I-LOC",
53
+ "13": "B-PRODUCT",
54
+ "14": "I-PRODUCT",
55
+ "15": "B-DATE",
56
+ "16": "I-DATE",
57
+ "17": "B-TIME",
58
+ "18": "I-TIME",
59
+ "19": "B-PERCENT",
60
+ "20": "I-PERCENT",
61
+ "21": "B-MONEY",
62
+ "22": "I-MONEY",
63
+ "23": "B-QUANTITY",
64
+ "24": "I-QUANTITY",
65
+ "25": "B-ORDINAL",
66
+ "26": "I-ORDINAL",
67
+ "27": "B-CARDINAL",
68
+ "28": "I-CARDINAL",
69
+ "29": "B-EVENT",
70
+ "30": "I-EVENT",
71
+ "31": "B-WORK_OF_ART",
72
+ "32": "I-WORK_OF_ART",
73
+ "33": "B-LAW",
74
+ "34": "I-LAW",
75
+ "35": "B-LANGUAGE",
76
+ "36": "I-LANGUAGE"
77
+ },
78
+ "initializer_range": 0.02,
79
+ "intermediate_size": 3072,
80
+ "label2id": {
81
+ "B-CARDINAL": 27,
82
+ "B-DATE": 15,
83
+ "B-EVENT": 29,
84
+ "B-FAC": 5,
85
+ "B-GPE": 9,
86
+ "B-LANGUAGE": 35,
87
+ "B-LAW": 33,
88
+ "B-LOC": 11,
89
+ "B-MONEY": 21,
90
+ "B-NORP": 3,
91
+ "B-ORDINAL": 25,
92
+ "B-ORG": 7,
93
+ "B-PERCENT": 19,
94
+ "B-PERSON": 1,
95
+ "B-PRODUCT": 13,
96
+ "B-QUANTITY": 23,
97
+ "B-TIME": 17,
98
+ "B-WORK_OF_ART": 31,
99
+ "I-CARDINAL": 28,
100
+ "I-DATE": 16,
101
+ "I-EVENT": 30,
102
+ "I-FAC": 6,
103
+ "I-GPE": 10,
104
+ "I-LANGUAGE": 36,
105
+ "I-LAW": 34,
106
+ "I-LOC": 12,
107
+ "I-MONEY": 22,
108
+ "I-NORP": 4,
109
+ "I-ORDINAL": 26,
110
+ "I-ORG": 8,
111
+ "I-PERCENT": 20,
112
+ "I-PERSON": 2,
113
+ "I-PRODUCT": 14,
114
+ "I-QUANTITY": 24,
115
+ "I-TIME": 18,
116
+ "I-WORK_OF_ART": 32,
117
+ "O": 0
118
+ },
119
+ "layer_norm_eps": 1e-12,
120
+ "max_position_embeddings": 512,
121
+ "model_type": "bert",
122
+ "num_attention_heads": 12,
123
+ "num_hidden_layers": 12,
124
+ "pad_token_id": 0,
125
+ "position_embedding_type": "absolute",
126
+ "torch_dtype": "float32",
127
+ "transformers_version": "4.20.0",
128
+ "type_vocab_size": 2,
129
+ "use_cache": true,
130
+ "vocab_size": 28996
131
+ }
132
+
133
+ 2022-07-03 16:16:45,304 - transformers.modeling_utils - INFO - loading weights file models/bert-base-cased_1656837168.84538/checkpoint-14100/pytorch_model.bin
134
+ 2022-07-03 16:16:46,439 - transformers.modeling_utils - INFO - All model checkpoint weights were used when initializing BertForTokenClassification.
135
+
136
+ 2022-07-03 16:16:46,439 - transformers.modeling_utils - INFO - All the weights of BertForTokenClassification were initialized from the model checkpoint at models/bert-base-cased_1656837168.84538/checkpoint-14100.
137
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForTokenClassification for predictions without further training.
138
+ 2022-07-03 16:16:46,442 - __main__ - INFO - BertForTokenClassification(
139
+ (bert): BertModel(
140
+ (embeddings): BertEmbeddings(
141
+ (word_embeddings): Embedding(28996, 768, padding_idx=0)
142
+ (position_embeddings): Embedding(512, 768)
143
+ (token_type_embeddings): Embedding(2, 768)
144
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
145
+ (dropout): Dropout(p=0.1, inplace=False)
146
+ )
147
+ (encoder): BertEncoder(
148
+ (layer): ModuleList(
149
+ (0): BertLayer(
150
+ (attention): BertAttention(
151
+ (self): BertSelfAttention(
152
+ (query): Linear(in_features=768, out_features=768, bias=True)
153
+ (key): Linear(in_features=768, out_features=768, bias=True)
154
+ (value): Linear(in_features=768, out_features=768, bias=True)
155
+ (dropout): Dropout(p=0.1, inplace=False)
156
+ )
157
+ (output): BertSelfOutput(
158
+ (dense): Linear(in_features=768, out_features=768, bias=True)
159
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
160
+ (dropout): Dropout(p=0.1, inplace=False)
161
+ )
162
+ )
163
+ (intermediate): BertIntermediate(
164
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
165
+ (intermediate_act_fn): GELUActivation()
166
+ )
167
+ (output): BertOutput(
168
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
169
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
170
+ (dropout): Dropout(p=0.1, inplace=False)
171
+ )
172
+ )
173
+ (1): BertLayer(
174
+ (attention): BertAttention(
175
+ (self): BertSelfAttention(
176
+ (query): Linear(in_features=768, out_features=768, bias=True)
177
+ (key): Linear(in_features=768, out_features=768, bias=True)
178
+ (value): Linear(in_features=768, out_features=768, bias=True)
179
+ (dropout): Dropout(p=0.1, inplace=False)
180
+ )
181
+ (output): BertSelfOutput(
182
+ (dense): Linear(in_features=768, out_features=768, bias=True)
183
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
184
+ (dropout): Dropout(p=0.1, inplace=False)
185
+ )
186
+ )
187
+ (intermediate): BertIntermediate(
188
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
189
+ (intermediate_act_fn): GELUActivation()
190
+ )
191
+ (output): BertOutput(
192
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
193
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
194
+ (dropout): Dropout(p=0.1, inplace=False)
195
+ )
196
+ )
197
+ (2): BertLayer(
198
+ (attention): BertAttention(
199
+ (self): BertSelfAttention(
200
+ (query): Linear(in_features=768, out_features=768, bias=True)
201
+ (key): Linear(in_features=768, out_features=768, bias=True)
202
+ (value): Linear(in_features=768, out_features=768, bias=True)
203
+ (dropout): Dropout(p=0.1, inplace=False)
204
+ )
205
+ (output): BertSelfOutput(
206
+ (dense): Linear(in_features=768, out_features=768, bias=True)
207
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
208
+ (dropout): Dropout(p=0.1, inplace=False)
209
+ )
210
+ )
211
+ (intermediate): BertIntermediate(
212
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
213
+ (intermediate_act_fn): GELUActivation()
214
+ )
215
+ (output): BertOutput(
216
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
217
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
218
+ (dropout): Dropout(p=0.1, inplace=False)
219
+ )
220
+ )
221
+ (3): BertLayer(
222
+ (attention): BertAttention(
223
+ (self): BertSelfAttention(
224
+ (query): Linear(in_features=768, out_features=768, bias=True)
225
+ (key): Linear(in_features=768, out_features=768, bias=True)
226
+ (value): Linear(in_features=768, out_features=768, bias=True)
227
+ (dropout): Dropout(p=0.1, inplace=False)
228
+ )
229
+ (output): BertSelfOutput(
230
+ (dense): Linear(in_features=768, out_features=768, bias=True)
231
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
232
+ (dropout): Dropout(p=0.1, inplace=False)
233
+ )
234
+ )
235
+ (intermediate): BertIntermediate(
236
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
237
+ (intermediate_act_fn): GELUActivation()
238
+ )
239
+ (output): BertOutput(
240
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
241
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
242
+ (dropout): Dropout(p=0.1, inplace=False)
243
+ )
244
+ )
245
+ (4): BertLayer(
246
+ (attention): BertAttention(
247
+ (self): BertSelfAttention(
248
+ (query): Linear(in_features=768, out_features=768, bias=True)
249
+ (key): Linear(in_features=768, out_features=768, bias=True)
250
+ (value): Linear(in_features=768, out_features=768, bias=True)
251
+ (dropout): Dropout(p=0.1, inplace=False)
252
+ )
253
+ (output): BertSelfOutput(
254
+ (dense): Linear(in_features=768, out_features=768, bias=True)
255
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
256
+ (dropout): Dropout(p=0.1, inplace=False)
257
+ )
258
+ )
259
+ (intermediate): BertIntermediate(
260
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
261
+ (intermediate_act_fn): GELUActivation()
262
+ )
263
+ (output): BertOutput(
264
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
265
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
266
+ (dropout): Dropout(p=0.1, inplace=False)
267
+ )
268
+ )
269
+ (5): BertLayer(
270
+ (attention): BertAttention(
271
+ (self): BertSelfAttention(
272
+ (query): Linear(in_features=768, out_features=768, bias=True)
273
+ (key): Linear(in_features=768, out_features=768, bias=True)
274
+ (value): Linear(in_features=768, out_features=768, bias=True)
275
+ (dropout): Dropout(p=0.1, inplace=False)
276
+ )
277
+ (output): BertSelfOutput(
278
+ (dense): Linear(in_features=768, out_features=768, bias=True)
279
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
280
+ (dropout): Dropout(p=0.1, inplace=False)
281
+ )
282
+ )
283
+ (intermediate): BertIntermediate(
284
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
285
+ (intermediate_act_fn): GELUActivation()
286
+ )
287
+ (output): BertOutput(
288
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
289
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
290
+ (dropout): Dropout(p=0.1, inplace=False)
291
+ )
292
+ )
293
+ (6): BertLayer(
294
+ (attention): BertAttention(
295
+ (self): BertSelfAttention(
296
+ (query): Linear(in_features=768, out_features=768, bias=True)
297
+ (key): Linear(in_features=768, out_features=768, bias=True)
298
+ (value): Linear(in_features=768, out_features=768, bias=True)
299
+ (dropout): Dropout(p=0.1, inplace=False)
300
+ )
301
+ (output): BertSelfOutput(
302
+ (dense): Linear(in_features=768, out_features=768, bias=True)
303
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
304
+ (dropout): Dropout(p=0.1, inplace=False)
305
+ )
306
+ )
307
+ (intermediate): BertIntermediate(
308
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
309
+ (intermediate_act_fn): GELUActivation()
310
+ )
311
+ (output): BertOutput(
312
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
313
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
314
+ (dropout): Dropout(p=0.1, inplace=False)
315
+ )
316
+ )
317
+ (7): BertLayer(
318
+ (attention): BertAttention(
319
+ (self): BertSelfAttention(
320
+ (query): Linear(in_features=768, out_features=768, bias=True)
321
+ (key): Linear(in_features=768, out_features=768, bias=True)
322
+ (value): Linear(in_features=768, out_features=768, bias=True)
323
+ (dropout): Dropout(p=0.1, inplace=False)
324
+ )
325
+ (output): BertSelfOutput(
326
+ (dense): Linear(in_features=768, out_features=768, bias=True)
327
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
328
+ (dropout): Dropout(p=0.1, inplace=False)
329
+ )
330
+ )
331
+ (intermediate): BertIntermediate(
332
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
333
+ (intermediate_act_fn): GELUActivation()
334
+ )
335
+ (output): BertOutput(
336
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
337
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
338
+ (dropout): Dropout(p=0.1, inplace=False)
339
+ )
340
+ )
341
+ (8): BertLayer(
342
+ (attention): BertAttention(
343
+ (self): BertSelfAttention(
344
+ (query): Linear(in_features=768, out_features=768, bias=True)
345
+ (key): Linear(in_features=768, out_features=768, bias=True)
346
+ (value): Linear(in_features=768, out_features=768, bias=True)
347
+ (dropout): Dropout(p=0.1, inplace=False)
348
+ )
349
+ (output): BertSelfOutput(
350
+ (dense): Linear(in_features=768, out_features=768, bias=True)
351
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
352
+ (dropout): Dropout(p=0.1, inplace=False)
353
+ )
354
+ )
355
+ (intermediate): BertIntermediate(
356
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
357
+ (intermediate_act_fn): GELUActivation()
358
+ )
359
+ (output): BertOutput(
360
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
361
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
362
+ (dropout): Dropout(p=0.1, inplace=False)
363
+ )
364
+ )
365
+ (9): BertLayer(
366
+ (attention): BertAttention(
367
+ (self): BertSelfAttention(
368
+ (query): Linear(in_features=768, out_features=768, bias=True)
369
+ (key): Linear(in_features=768, out_features=768, bias=True)
370
+ (value): Linear(in_features=768, out_features=768, bias=True)
371
+ (dropout): Dropout(p=0.1, inplace=False)
372
+ )
373
+ (output): BertSelfOutput(
374
+ (dense): Linear(in_features=768, out_features=768, bias=True)
375
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
376
+ (dropout): Dropout(p=0.1, inplace=False)
377
+ )
378
+ )
379
+ (intermediate): BertIntermediate(
380
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
381
+ (intermediate_act_fn): GELUActivation()
382
+ )
383
+ (output): BertOutput(
384
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
385
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
386
+ (dropout): Dropout(p=0.1, inplace=False)
387
+ )
388
+ )
389
+ (10): BertLayer(
390
+ (attention): BertAttention(
391
+ (self): BertSelfAttention(
392
+ (query): Linear(in_features=768, out_features=768, bias=True)
393
+ (key): Linear(in_features=768, out_features=768, bias=True)
394
+ (value): Linear(in_features=768, out_features=768, bias=True)
395
+ (dropout): Dropout(p=0.1, inplace=False)
396
+ )
397
+ (output): BertSelfOutput(
398
+ (dense): Linear(in_features=768, out_features=768, bias=True)
399
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
400
+ (dropout): Dropout(p=0.1, inplace=False)
401
+ )
402
+ )
403
+ (intermediate): BertIntermediate(
404
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
405
+ (intermediate_act_fn): GELUActivation()
406
+ )
407
+ (output): BertOutput(
408
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
409
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
410
+ (dropout): Dropout(p=0.1, inplace=False)
411
+ )
412
+ )
413
+ (11): BertLayer(
414
+ (attention): BertAttention(
415
+ (self): BertSelfAttention(
416
+ (query): Linear(in_features=768, out_features=768, bias=True)
417
+ (key): Linear(in_features=768, out_features=768, bias=True)
418
+ (value): Linear(in_features=768, out_features=768, bias=True)
419
+ (dropout): Dropout(p=0.1, inplace=False)
420
+ )
421
+ (output): BertSelfOutput(
422
+ (dense): Linear(in_features=768, out_features=768, bias=True)
423
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
424
+ (dropout): Dropout(p=0.1, inplace=False)
425
+ )
426
+ )
427
+ (intermediate): BertIntermediate(
428
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
429
+ (intermediate_act_fn): GELUActivation()
430
+ )
431
+ (output): BertOutput(
432
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
433
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
434
+ (dropout): Dropout(p=0.1, inplace=False)
435
+ )
436
+ )
437
+ )
438
+ )
439
+ )
440
+ (dropout): Dropout(p=0.1, inplace=False)
441
+ (classifier): Linear(in_features=768, out_features=37, bias=True)
442
+ )
443
+ 2022-07-03 16:16:46,443 - __main__ - INFO - CONFIGS:{
444
+ "output_dir": "./models/finetuned-base-uncased_1656845190.560204",
445
+ "per_device_train_batch_size": 16,
446
+ "per_device_eval_batch_size": 16,
447
+ "save_total_limit": 2,
448
+ "num_train_epochs": 3,
449
+ "seed": 1,
450
+ "load_best_model_at_end": true,
451
+ "evaluation_strategy": "epoch",
452
+ "save_strategy": "epoch",
453
+ "learning_rate": 2e-05,
454
+ "weight_decay": 0.01,
455
+ "logging_steps": 469.0
456
+ }
457
+ 2022-07-03 16:16:46,444 - transformers.training_args - INFO - PyTorch: setting up devices
458
+ 2022-07-03 16:16:46,488 - transformers.training_args - INFO - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
459
+ 2022-07-03 16:16:46,494 - __main__ - INFO - [[ MODEL EVALUATION ]]
460
+ 2022-07-03 16:16:46,494 - transformers.trainer - INFO - The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: ner_tags, id, words. If ner_tags, id, words are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
461
+ 2022-07-03 16:16:46,497 - transformers.trainer - INFO - ***** Running Evaluation *****
462
+ 2022-07-03 16:16:46,497 - transformers.trainer - INFO - Num examples = 9479
463
+ 2022-07-03 16:16:46,498 - transformers.trainer - INFO - Batch size = 16
464
+ 2022-07-03 16:25:59,032 - __main__ - INFO - {'eval_loss': 0.06829366087913513, 'eval_precision': 0.8785372224640836, 'eval_recall': 0.8963311717153771, 'eval_f1': 0.8873450004397152, 'eval_accuracy': 0.9835533880964035, 'eval_runtime': 552.5236, 'eval_samples_per_second': 17.156, 'eval_steps_per_second': 1.073, 'step': 0}
465
+ 2022-07-03 16:25:59,032 - transformers.trainer - INFO - The following columns in the test set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: ner_tags, id, words. If ner_tags, id, words are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
466
+ 2022-07-03 16:25:59,034 - transformers.trainer - INFO - ***** Running Prediction *****
467
+ 2022-07-03 16:25:59,035 - transformers.trainer - INFO - Num examples = 9479
468
+ 2022-07-03 16:25:59,035 - transformers.trainer - INFO - Batch size = 16
469
+ 2022-07-03 16:34:58,579 - __main__ - INFO - precision recall f1-score support
470
+
471
+ CARDINAL 0.86 0.87 0.86 935
472
+ DATE 0.84 0.88 0.86 1602
473
+ EVENT 0.65 0.67 0.66 63
474
+ FAC 0.69 0.71 0.70 135
475
+ GPE 0.97 0.93 0.95 2240
476
+ LANGUAGE 0.76 0.73 0.74 22
477
+ LAW 0.54 0.55 0.54 40
478
+ LOC 0.73 0.80 0.76 179
479
+ MONEY 0.87 0.90 0.88 314
480
+ NORP 0.93 0.96 0.94 841
481
+ ORDINAL 0.80 0.87 0.83 195
482
+ ORG 0.88 0.90 0.89 1795
483
+ PERCENT 0.88 0.90 0.89 349
484
+ PERSON 0.94 0.95 0.94 1988
485
+ PRODUCT 0.62 0.76 0.69 76
486
+ QUANTITY 0.74 0.81 0.77 105
487
+ TIME 0.61 0.67 0.64 212
488
+ WORK_OF_ART 0.56 0.66 0.61 166
489
+
490
+ micro avg 0.88 0.90 0.89 11257
491
+ macro avg 0.77 0.81 0.79 11257
492
+ weighted avg 0.88 0.90 0.89 11257
493
+
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:536f64240cd0606727dcfdb286546def5f6d86562cf88b1e5d905044d14c7914
3
+ size 431062961
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da9c3c7b790cd5b6872d6314c6e11475995e4ff06527b2101d80e1805497175f
3
+ size 14503
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0271a42487a5a379bf223d761cfc585dcba1a6069b012d2a634c31973187a24e
3
+ size 623
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_lower_case": false,
4
+ "mask_token": "[MASK]",
5
+ "model_max_length": 512,
6
+ "name_or_path": "bert-base-cased",
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "special_tokens_map_file": null,
10
+ "strip_accents": null,
11
+ "tokenize_chinese_chars": true,
12
+ "tokenizer_class": "BertTokenizer",
13
+ "unk_token": "[UNK]"
14
+ }
trainer_state.json ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.06504358351230621,
3
+ "best_model_checkpoint": "./models/bert-base-cased_1656837168.84538/checkpoint-9400",
4
+ "epoch": 3.0,
5
+ "global_step": 14100,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.1,
12
+ "learning_rate": 1.9334751773049647e-05,
13
+ "loss": 0.2895,
14
+ "step": 469
15
+ },
16
+ {
17
+ "epoch": 0.2,
18
+ "learning_rate": 1.866950354609929e-05,
19
+ "loss": 0.11,
20
+ "step": 938
21
+ },
22
+ {
23
+ "epoch": 0.3,
24
+ "learning_rate": 1.8004255319148936e-05,
25
+ "loss": 0.0845,
26
+ "step": 1407
27
+ },
28
+ {
29
+ "epoch": 0.4,
30
+ "learning_rate": 1.7339007092198585e-05,
31
+ "loss": 0.0832,
32
+ "step": 1876
33
+ },
34
+ {
35
+ "epoch": 0.5,
36
+ "learning_rate": 1.667375886524823e-05,
37
+ "loss": 0.0775,
38
+ "step": 2345
39
+ },
40
+ {
41
+ "epoch": 0.6,
42
+ "learning_rate": 1.6008510638297874e-05,
43
+ "loss": 0.0666,
44
+ "step": 2814
45
+ },
46
+ {
47
+ "epoch": 0.7,
48
+ "learning_rate": 1.534326241134752e-05,
49
+ "loss": 0.0703,
50
+ "step": 3283
51
+ },
52
+ {
53
+ "epoch": 0.8,
54
+ "learning_rate": 1.4678014184397164e-05,
55
+ "loss": 0.0587,
56
+ "step": 3752
57
+ },
58
+ {
59
+ "epoch": 0.9,
60
+ "learning_rate": 1.401276595744681e-05,
61
+ "loss": 0.0617,
62
+ "step": 4221
63
+ },
64
+ {
65
+ "epoch": 1.0,
66
+ "learning_rate": 1.3347517730496456e-05,
67
+ "loss": 0.0558,
68
+ "step": 4690
69
+ },
70
+ {
71
+ "epoch": 1.0,
72
+ "eval_accuracy": 0.981902240253805,
73
+ "eval_f1": 0.8711506586408444,
74
+ "eval_loss": 0.06536950916051865,
75
+ "eval_precision": 0.8557717028022966,
76
+ "eval_recall": 0.88709247579284,
77
+ "eval_runtime": 31.2315,
78
+ "eval_samples_per_second": 303.507,
79
+ "eval_steps_per_second": 18.987,
80
+ "step": 4700
81
+ },
82
+ {
83
+ "epoch": 1.1,
84
+ "learning_rate": 1.26822695035461e-05,
85
+ "loss": 0.0434,
86
+ "step": 5159
87
+ },
88
+ {
89
+ "epoch": 1.2,
90
+ "learning_rate": 1.2017021276595745e-05,
91
+ "loss": 0.0441,
92
+ "step": 5628
93
+ },
94
+ {
95
+ "epoch": 1.3,
96
+ "learning_rate": 1.1351773049645392e-05,
97
+ "loss": 0.0428,
98
+ "step": 6097
99
+ },
100
+ {
101
+ "epoch": 1.4,
102
+ "learning_rate": 1.0686524822695037e-05,
103
+ "loss": 0.0426,
104
+ "step": 6566
105
+ },
106
+ {
107
+ "epoch": 1.5,
108
+ "learning_rate": 1.0021276595744682e-05,
109
+ "loss": 0.0433,
110
+ "step": 7035
111
+ },
112
+ {
113
+ "epoch": 1.6,
114
+ "learning_rate": 9.356028368794327e-06,
115
+ "loss": 0.0402,
116
+ "step": 7504
117
+ },
118
+ {
119
+ "epoch": 1.7,
120
+ "learning_rate": 8.690780141843971e-06,
121
+ "loss": 0.0375,
122
+ "step": 7973
123
+ },
124
+ {
125
+ "epoch": 1.8,
126
+ "learning_rate": 8.025531914893618e-06,
127
+ "loss": 0.04,
128
+ "step": 8442
129
+ },
130
+ {
131
+ "epoch": 1.9,
132
+ "learning_rate": 7.360283687943263e-06,
133
+ "loss": 0.0359,
134
+ "step": 8911
135
+ },
136
+ {
137
+ "epoch": 2.0,
138
+ "learning_rate": 6.695035460992908e-06,
139
+ "loss": 0.0403,
140
+ "step": 9380
141
+ },
142
+ {
143
+ "epoch": 2.0,
144
+ "eval_accuracy": 0.9830639407002046,
145
+ "eval_f1": 0.8834252924299271,
146
+ "eval_loss": 0.06504358351230621,
147
+ "eval_precision": 0.8779610457975083,
148
+ "eval_recall": 0.8889579817002754,
149
+ "eval_runtime": 30.5614,
150
+ "eval_samples_per_second": 310.162,
151
+ "eval_steps_per_second": 19.404,
152
+ "step": 9400
153
+ },
154
+ {
155
+ "epoch": 2.1,
156
+ "learning_rate": 6.029787234042554e-06,
157
+ "loss": 0.0263,
158
+ "step": 9849
159
+ },
160
+ {
161
+ "epoch": 2.2,
162
+ "learning_rate": 5.3645390070921985e-06,
163
+ "loss": 0.0239,
164
+ "step": 10318
165
+ },
166
+ {
167
+ "epoch": 2.3,
168
+ "learning_rate": 4.699290780141844e-06,
169
+ "loss": 0.0254,
170
+ "step": 10787
171
+ },
172
+ {
173
+ "epoch": 2.39,
174
+ "learning_rate": 4.03404255319149e-06,
175
+ "loss": 0.0272,
176
+ "step": 11256
177
+ },
178
+ {
179
+ "epoch": 2.49,
180
+ "learning_rate": 3.368794326241135e-06,
181
+ "loss": 0.024,
182
+ "step": 11725
183
+ },
184
+ {
185
+ "epoch": 2.59,
186
+ "learning_rate": 2.70354609929078e-06,
187
+ "loss": 0.0242,
188
+ "step": 12194
189
+ },
190
+ {
191
+ "epoch": 2.69,
192
+ "learning_rate": 2.0382978723404254e-06,
193
+ "loss": 0.0282,
194
+ "step": 12663
195
+ },
196
+ {
197
+ "epoch": 2.79,
198
+ "learning_rate": 1.373049645390071e-06,
199
+ "loss": 0.0246,
200
+ "step": 13132
201
+ },
202
+ {
203
+ "epoch": 2.89,
204
+ "learning_rate": 7.078014184397164e-07,
205
+ "loss": 0.0261,
206
+ "step": 13601
207
+ },
208
+ {
209
+ "epoch": 2.99,
210
+ "learning_rate": 4.2553191489361707e-08,
211
+ "loss": 0.0262,
212
+ "step": 14070
213
+ },
214
+ {
215
+ "epoch": 3.0,
216
+ "eval_accuracy": 0.9835533880964035,
217
+ "eval_f1": 0.8873450004397152,
218
+ "eval_loss": 0.06829366087913513,
219
+ "eval_precision": 0.8785372224640836,
220
+ "eval_recall": 0.8963311717153771,
221
+ "eval_runtime": 30.6109,
222
+ "eval_samples_per_second": 309.661,
223
+ "eval_steps_per_second": 19.372,
224
+ "step": 14100
225
+ }
226
+ ],
227
+ "max_steps": 14100,
228
+ "num_train_epochs": 3,
229
+ "total_flos": 6310359757516614.0,
230
+ "trial_name": null,
231
+ "trial_params": null
232
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc6ed93427ba78924ececb965897327eb535b317ba258fdcb96bfdec03c51566
3
+ size 3311
vocab.txt ADDED
The diff for this file is too large to render. See raw diff