dipteshkanojia commited on
Commit
ffbc90d
1 Parent(s): 4693764

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: hing-roberta-NCM-run-2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # hing-roberta-NCM-run-2
19
+
20
+ This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 3.3647
23
+ - Accuracy: 0.6483
24
+ - Precision: 0.6369
25
+ - Recall: 0.6325
26
+ - F1: 0.6341
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | 0.8973 | 1.0 | 927 | 0.8166 | 0.6483 | 0.6545 | 0.6576 | 0.6460 |
58
+ | 0.6827 | 2.0 | 1854 | 0.9071 | 0.6526 | 0.6444 | 0.6261 | 0.6299 |
59
+ | 0.4672 | 3.0 | 2781 | 1.1600 | 0.6764 | 0.6657 | 0.6634 | 0.6643 |
60
+ | 0.3388 | 4.0 | 3708 | 1.7426 | 0.6548 | 0.6406 | 0.6442 | 0.6418 |
61
+ | 0.2786 | 5.0 | 4635 | 1.9385 | 0.6505 | 0.6484 | 0.6437 | 0.6434 |
62
+ | 0.1794 | 6.0 | 5562 | 2.3158 | 0.6472 | 0.6564 | 0.6365 | 0.6388 |
63
+ | 0.12 | 7.0 | 6489 | 2.6961 | 0.6591 | 0.6458 | 0.6531 | 0.6466 |
64
+ | 0.1298 | 8.0 | 7416 | 2.7196 | 0.6505 | 0.6523 | 0.6307 | 0.6342 |
65
+ | 0.0941 | 9.0 | 8343 | 2.5853 | 0.6548 | 0.6406 | 0.6426 | 0.6415 |
66
+ | 0.0696 | 10.0 | 9270 | 2.8386 | 0.6613 | 0.6616 | 0.6314 | 0.6348 |
67
+ | 0.0722 | 11.0 | 10197 | 2.9658 | 0.6537 | 0.6356 | 0.6356 | 0.6355 |
68
+ | 0.0509 | 12.0 | 11124 | 3.3286 | 0.6429 | 0.6262 | 0.6192 | 0.6214 |
69
+ | 0.0444 | 13.0 | 12051 | 3.1654 | 0.6483 | 0.6347 | 0.6302 | 0.6319 |
70
+ | 0.0341 | 14.0 | 12978 | 2.9509 | 0.6537 | 0.6430 | 0.6394 | 0.6401 |
71
+ | 0.0345 | 15.0 | 13905 | 3.3416 | 0.6656 | 0.6514 | 0.6488 | 0.6499 |
72
+ | 0.0303 | 16.0 | 14832 | 3.3874 | 0.6419 | 0.6267 | 0.6339 | 0.6272 |
73
+ | 0.0245 | 17.0 | 15759 | 3.2854 | 0.6570 | 0.6428 | 0.6420 | 0.6421 |
74
+ | 0.0174 | 18.0 | 16686 | 3.2863 | 0.6602 | 0.6569 | 0.6427 | 0.6465 |
75
+ | 0.0136 | 19.0 | 17613 | 3.3674 | 0.6494 | 0.6361 | 0.6341 | 0.6349 |
76
+ | 0.0111 | 20.0 | 18540 | 3.3647 | 0.6483 | 0.6369 | 0.6325 | 0.6341 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.20.1
82
+ - Pytorch 1.10.1+cu111
83
+ - Datasets 2.3.2
84
+ - Tokenizers 0.12.1