dipteshkanojia
commited on
Commit
•
ffbc90d
1
Parent(s):
4693764
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: hing-roberta-NCM-run-2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# hing-roberta-NCM-run-2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 3.3647
|
23 |
+
- Accuracy: 0.6483
|
24 |
+
- Precision: 0.6369
|
25 |
+
- Recall: 0.6325
|
26 |
+
- F1: 0.6341
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 3e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
57 |
+
| 0.8973 | 1.0 | 927 | 0.8166 | 0.6483 | 0.6545 | 0.6576 | 0.6460 |
|
58 |
+
| 0.6827 | 2.0 | 1854 | 0.9071 | 0.6526 | 0.6444 | 0.6261 | 0.6299 |
|
59 |
+
| 0.4672 | 3.0 | 2781 | 1.1600 | 0.6764 | 0.6657 | 0.6634 | 0.6643 |
|
60 |
+
| 0.3388 | 4.0 | 3708 | 1.7426 | 0.6548 | 0.6406 | 0.6442 | 0.6418 |
|
61 |
+
| 0.2786 | 5.0 | 4635 | 1.9385 | 0.6505 | 0.6484 | 0.6437 | 0.6434 |
|
62 |
+
| 0.1794 | 6.0 | 5562 | 2.3158 | 0.6472 | 0.6564 | 0.6365 | 0.6388 |
|
63 |
+
| 0.12 | 7.0 | 6489 | 2.6961 | 0.6591 | 0.6458 | 0.6531 | 0.6466 |
|
64 |
+
| 0.1298 | 8.0 | 7416 | 2.7196 | 0.6505 | 0.6523 | 0.6307 | 0.6342 |
|
65 |
+
| 0.0941 | 9.0 | 8343 | 2.5853 | 0.6548 | 0.6406 | 0.6426 | 0.6415 |
|
66 |
+
| 0.0696 | 10.0 | 9270 | 2.8386 | 0.6613 | 0.6616 | 0.6314 | 0.6348 |
|
67 |
+
| 0.0722 | 11.0 | 10197 | 2.9658 | 0.6537 | 0.6356 | 0.6356 | 0.6355 |
|
68 |
+
| 0.0509 | 12.0 | 11124 | 3.3286 | 0.6429 | 0.6262 | 0.6192 | 0.6214 |
|
69 |
+
| 0.0444 | 13.0 | 12051 | 3.1654 | 0.6483 | 0.6347 | 0.6302 | 0.6319 |
|
70 |
+
| 0.0341 | 14.0 | 12978 | 2.9509 | 0.6537 | 0.6430 | 0.6394 | 0.6401 |
|
71 |
+
| 0.0345 | 15.0 | 13905 | 3.3416 | 0.6656 | 0.6514 | 0.6488 | 0.6499 |
|
72 |
+
| 0.0303 | 16.0 | 14832 | 3.3874 | 0.6419 | 0.6267 | 0.6339 | 0.6272 |
|
73 |
+
| 0.0245 | 17.0 | 15759 | 3.2854 | 0.6570 | 0.6428 | 0.6420 | 0.6421 |
|
74 |
+
| 0.0174 | 18.0 | 16686 | 3.2863 | 0.6602 | 0.6569 | 0.6427 | 0.6465 |
|
75 |
+
| 0.0136 | 19.0 | 17613 | 3.3674 | 0.6494 | 0.6361 | 0.6341 | 0.6349 |
|
76 |
+
| 0.0111 | 20.0 | 18540 | 3.3647 | 0.6483 | 0.6369 | 0.6325 | 0.6341 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.20.1
|
82 |
+
- Pytorch 1.10.1+cu111
|
83 |
+
- Datasets 2.3.2
|
84 |
+
- Tokenizers 0.12.1
|