dipteshkanojia commited on
Commit
4ddf5fe
1 Parent(s): 5201154

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: hing-roberta-CM-run-4
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # hing-roberta-CM-run-4
19
+
20
+ This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 2.5827
23
+ - Accuracy: 0.7525
24
+ - Precision: 0.6967
25
+ - Recall: 0.7004
26
+ - F1: 0.6980
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | 0.8734 | 1.0 | 497 | 0.7673 | 0.7203 | 0.6617 | 0.6600 | 0.6604 |
58
+ | 0.6245 | 2.0 | 994 | 0.7004 | 0.7485 | 0.6951 | 0.7137 | 0.7015 |
59
+ | 0.4329 | 3.0 | 1491 | 1.0469 | 0.7223 | 0.6595 | 0.6640 | 0.6538 |
60
+ | 0.2874 | 4.0 | 1988 | 1.3103 | 0.7586 | 0.7064 | 0.7157 | 0.7104 |
61
+ | 0.1837 | 5.0 | 2485 | 1.7916 | 0.7425 | 0.6846 | 0.6880 | 0.6861 |
62
+ | 0.1121 | 6.0 | 2982 | 2.0721 | 0.7465 | 0.7064 | 0.7041 | 0.7003 |
63
+ | 0.0785 | 7.0 | 3479 | 2.3469 | 0.7425 | 0.6898 | 0.6795 | 0.6807 |
64
+ | 0.0609 | 8.0 | 3976 | 2.2775 | 0.7404 | 0.6819 | 0.6881 | 0.6845 |
65
+ | 0.0817 | 9.0 | 4473 | 2.1992 | 0.7686 | 0.7342 | 0.7147 | 0.7166 |
66
+ | 0.042 | 10.0 | 4970 | 2.2359 | 0.7565 | 0.7211 | 0.7141 | 0.7106 |
67
+ | 0.0463 | 11.0 | 5467 | 2.2291 | 0.7646 | 0.7189 | 0.7186 | 0.7177 |
68
+ | 0.027 | 12.0 | 5964 | 2.3955 | 0.7525 | 0.6994 | 0.7073 | 0.7028 |
69
+ | 0.0314 | 13.0 | 6461 | 2.4256 | 0.7565 | 0.7033 | 0.7153 | 0.7082 |
70
+ | 0.0251 | 14.0 | 6958 | 2.4578 | 0.7565 | 0.7038 | 0.7025 | 0.7027 |
71
+ | 0.0186 | 15.0 | 7455 | 2.5984 | 0.7565 | 0.7141 | 0.6945 | 0.6954 |
72
+ | 0.0107 | 16.0 | 7952 | 2.5068 | 0.7425 | 0.6859 | 0.7016 | 0.6912 |
73
+ | 0.0134 | 17.0 | 8449 | 2.5876 | 0.7606 | 0.7018 | 0.7041 | 0.7029 |
74
+ | 0.0145 | 18.0 | 8946 | 2.6011 | 0.7626 | 0.7072 | 0.7079 | 0.7073 |
75
+ | 0.0108 | 19.0 | 9443 | 2.5861 | 0.7545 | 0.6973 | 0.7017 | 0.6990 |
76
+ | 0.0076 | 20.0 | 9940 | 2.5827 | 0.7525 | 0.6967 | 0.7004 | 0.6980 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.20.1
82
+ - Pytorch 1.10.1+cu111
83
+ - Datasets 2.3.2
84
+ - Tokenizers 0.12.1