diogopaes10 commited on
Commit
acbf4ed
·
1 Parent(s): bc23f2e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/MiniLM-L12-H384-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - f1
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: 018-microsoft-MiniLM-finetuned-yahoo-8000_2000
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # 018-microsoft-MiniLM-finetuned-yahoo-8000_2000
20
+
21
+ This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 1.0511
24
+ - F1: 0.6984
25
+ - Accuracy: 0.701
26
+ - Precision: 0.7000
27
+ - Recall: 0.701
28
+ - System Ram Used: 4.0180
29
+ - System Ram Total: 83.4807
30
+ - Gpu Ram Allocated: 0.3995
31
+ - Gpu Ram Cached: 12.9297
32
+ - Gpu Ram Total: 39.5640
33
+ - Gpu Utilization: 35
34
+ - Disk Space Used: 26.2045
35
+ - Disk Space Total: 78.1898
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 2e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 10
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
65
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
66
+ | 2.1461 | 0.5 | 125 | 1.8487 | 0.4711 | 0.5465 | 0.5181 | 0.5465 | 3.8798 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 28 | 24.5841 | 78.1898 |
67
+ | 1.6793 | 1.0 | 250 | 1.5280 | 0.5799 | 0.615 | 0.6207 | 0.615 | 3.8827 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 28 | 24.5842 | 78.1898 |
68
+ | 1.4163 | 1.5 | 375 | 1.3396 | 0.6508 | 0.6675 | 0.6691 | 0.6675 | 3.8831 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 28 | 24.5842 | 78.1898 |
69
+ | 1.2855 | 2.0 | 500 | 1.2413 | 0.6633 | 0.6745 | 0.6742 | 0.6745 | 3.8975 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 30 | 24.5843 | 78.1898 |
70
+ | 1.1364 | 2.5 | 625 | 1.1795 | 0.6658 | 0.6725 | 0.6758 | 0.6725 | 4.0967 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 31 | 25.4571 | 78.1898 |
71
+ | 1.0569 | 3.0 | 750 | 1.1167 | 0.6785 | 0.6845 | 0.6841 | 0.6845 | 4.0923 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 29 | 25.4573 | 78.1898 |
72
+ | 0.9596 | 3.5 | 875 | 1.0866 | 0.6883 | 0.698 | 0.6920 | 0.698 | 3.8765 | 83.4807 | 0.3997 | 12.9297 | 39.5640 | 29 | 25.4573 | 78.1898 |
73
+ | 0.917 | 4.0 | 1000 | 1.0703 | 0.6796 | 0.6875 | 0.6841 | 0.6875 | 3.8976 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 29 | 25.4573 | 78.1898 |
74
+ | 0.8512 | 4.5 | 1125 | 1.0629 | 0.6913 | 0.6915 | 0.6945 | 0.6915 | 4.0600 | 83.4807 | 0.3997 | 12.9297 | 39.5640 | 28 | 25.8306 | 78.1898 |
75
+ | 0.8121 | 5.0 | 1250 | 1.0576 | 0.6838 | 0.691 | 0.6905 | 0.691 | 4.0432 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 31 | 25.8306 | 78.1898 |
76
+ | 0.7733 | 5.5 | 1375 | 1.0598 | 0.6774 | 0.6805 | 0.6838 | 0.6805 | 3.8379 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 28 | 25.8307 | 78.1898 |
77
+ | 0.7431 | 6.0 | 1500 | 1.0376 | 0.6974 | 0.702 | 0.6976 | 0.702 | 3.8546 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 31 | 25.8307 | 78.1898 |
78
+ | 0.7065 | 6.5 | 1625 | 1.0457 | 0.6990 | 0.6995 | 0.7014 | 0.6995 | 4.0339 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 28 | 26.2040 | 78.1898 |
79
+ | 0.671 | 7.0 | 1750 | 1.0396 | 0.6956 | 0.698 | 0.6966 | 0.698 | 4.0384 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 28 | 26.2040 | 78.1898 |
80
+ | 0.6438 | 7.5 | 1875 | 1.0474 | 0.6887 | 0.6925 | 0.6907 | 0.6925 | 3.8274 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 28 | 26.2040 | 78.1898 |
81
+ | 0.6326 | 8.0 | 2000 | 1.0384 | 0.6972 | 0.698 | 0.6983 | 0.698 | 3.8402 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 34 | 26.2041 | 78.1898 |
82
+ | 0.6121 | 8.5 | 2125 | 1.0440 | 0.6963 | 0.698 | 0.6976 | 0.698 | 4.0162 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 29 | 26.2042 | 78.1898 |
83
+ | 0.5911 | 9.0 | 2250 | 1.0518 | 0.6995 | 0.701 | 0.7006 | 0.701 | 4.0338 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 28 | 26.2043 | 78.1898 |
84
+ | 0.592 | 9.5 | 2375 | 1.0490 | 0.7023 | 0.7035 | 0.7025 | 0.7035 | 3.8126 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 27 | 26.2043 | 78.1898 |
85
+ | 0.5586 | 10.0 | 2500 | 1.0511 | 0.6984 | 0.701 | 0.7000 | 0.701 | 3.8448 | 83.4807 | 0.3996 | 12.9297 | 39.5640 | 27 | 26.2043 | 78.1898 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.31.0
91
+ - Pytorch 2.0.1+cu118
92
+ - Datasets 2.13.1
93
+ - Tokenizers 0.13.3