diodiodada commited on
Commit
0d11830
1 Parent(s): a567880

End of training

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert/distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - wnut_17
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: my_awesome_wnut_model
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: wnut_17
21
+ type: wnut_17
22
+ config: wnut_17
23
+ split: test
24
+ args: wnut_17
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.6110154905335629
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.3290083410565338
32
+ - name: F1
33
+ type: f1
34
+ value: 0.42771084337349397
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9430977726475995
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # my_awesome_wnut_model
44
+
45
+ This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.2694
48
+ - Precision: 0.6110
49
+ - Recall: 0.3290
50
+ - F1: 0.4277
51
+ - Accuracy: 0.9431
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 2
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 213 | 0.2751 | 0.6152 | 0.2919 | 0.3960 | 0.9404 |
83
+ | No log | 2.0 | 426 | 0.2694 | 0.6110 | 0.3290 | 0.4277 | 0.9431 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.41.2
89
+ - Pytorch 2.3.0+cu121
90
+ - Datasets 2.20.0
91
+ - Tokenizers 0.19.1