brain-diffuser / scripts /roi_versatilediffusion_reconstruct.py
dineshsai07's picture
Add files using upload-large-folder tool
46a8d8a verified
import sys
sys.path.append('versatile_diffusion')
import os
import os.path as osp
import PIL
from PIL import Image
from pathlib import Path
import numpy as np
import numpy.random as npr
import torch
import torchvision.transforms as tvtrans
from lib.cfg_helper import model_cfg_bank
from lib.model_zoo import get_model
from lib.model_zoo.ddim_vd import DDIMSampler_VD
from lib.experiments.sd_default import color_adjust, auto_merge_imlist
from torch.utils.data import DataLoader, Dataset
from lib.model_zoo.vd import VD
from lib.cfg_holder import cfg_unique_holder as cfguh
from lib.cfg_helper import get_command_line_args, cfg_initiates, load_cfg_yaml
import matplotlib.pyplot as plt
from skimage.transform import resize, downscale_local_mean
import argparse
parser = argparse.ArgumentParser(description='Argument Parser')
parser.add_argument("-sub", "--sub",help="Subject Number",default=1)
parser.add_argument("-diff_str", "--diff_str",help="Diffusion Strength",default=0.75)
parser.add_argument("-mix_str", "--mix_str",help="Mixing Strength",default=0.4)
args = parser.parse_args()
sub=int(args.sub)
assert sub in [1,2,5,7]
strength = float(args.diff_str)
mixing = float(args.mix_str)
def regularize_image(x):
BICUBIC = PIL.Image.Resampling.BICUBIC
if isinstance(x, str):
x = Image.open(x).resize([512, 512], resample=BICUBIC)
x = tvtrans.ToTensor()(x)
elif isinstance(x, PIL.Image.Image):
x = x.resize([512, 512], resample=BICUBIC)
x = tvtrans.ToTensor()(x)
elif isinstance(x, np.ndarray):
x = PIL.Image.fromarray(x).resize([512, 512], resample=BICUBIC)
x = tvtrans.ToTensor()(x)
elif isinstance(x, torch.Tensor):
pass
else:
assert False, 'Unknown image type'
assert (x.shape[1]==512) & (x.shape[2]==512), \
'Wrong image size'
return x
cfgm_name = 'vd_noema'
sampler = DDIMSampler_VD
pth = 'versatile_diffusion/pretrained/vd-four-flow-v1-0-fp16-deprecated.pth'
cfgm = model_cfg_bank()(cfgm_name)
net = get_model()(cfgm)
sd = torch.load(pth, map_location='cpu')
net.load_state_dict(sd, strict=False)
# Might require editing the GPU assignments due to Memory issues
net.clip.cuda(0)
net.autokl.cuda(0)
#net.model.cuda(0)
sampler = sampler(net)
#sampler.model.model.cuda(0)
#sampler.model.cuda(0)
batch_size = 1
pred_text = np.load('data/predicted_features/subj{:02d}/nsd_cliptext_roi_nsdgeneral.npy'.format(sub))
pred_text = torch.tensor(pred_text).half().cuda(0)
pred_vision = np.load('data/predicted_features/subj{:02d}/nsd_clipvision_roi_nsdgeneral.npy'.format(sub))
pred_vision = torch.tensor(pred_vision).half().cuda(0)
n_samples = 1
ddim_steps = 50
ddim_eta = 0
scale = 7.5
xtype = 'image'
ctype = 'prompt'
net.autokl.half()
res_dir = 'results/versatile_diffusion/subj{:02d}/roi/'.format(sub)
if not os.path.exists(res_dir):
os.makedirs(res_dir)
torch.manual_seed(0)
for im_id in range(len(pred_vision)):
zim = Image.open('results/vdvae/subj{:02d}/roi/{}.png'.format(sub,im_id))
zim = regularize_image(zim)
zin = zim*2 - 1
zin = zin.unsqueeze(0).cuda(0).half()
init_latent = net.autokl_encode(zin)
sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=ddim_eta, verbose=False)
#strength=0.75
assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]'
t_enc = int(strength * ddim_steps)
device = 'cuda:0'
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]).to(device))
#z_enc,_ = sampler.encode(init_latent.cuda(0).half(), c.cuda(0).half(), torch.tensor([t_enc]).to(sampler.model.model.diffusion_model.device))
dummy = ''
utx = net.clip_encode_text(dummy)
utx = utx.cuda(0).half()
dummy = torch.zeros((1,3,224,224)).cuda(0)
uim = net.clip_encode_vision(dummy)
uim = uim.cuda(0).half()
z_enc = z_enc.cuda(0)
h, w = 512,512
shape = [n_samples, 4, h//8, w//8]
cim = pred_vision[im_id].unsqueeze(0)
ctx = pred_text[im_id].unsqueeze(0)
#c[:,0] = u[:,0]
#z_enc = z_enc.cuda(0).half()
sampler.model.model.diffusion_model.device='cuda:0'
sampler.model.model.diffusion_model.half().cuda(0)
#mixing = 0.4
z = sampler.decode_dc(
x_latent=z_enc,
first_conditioning=[uim, cim],
second_conditioning=[utx, ctx],
t_start=t_enc,
unconditional_guidance_scale=scale,
xtype='image',
first_ctype='vision',
second_ctype='prompt',
mixed_ratio=(1-mixing), )
z = z.cuda(0).half()
x = net.autokl_decode(z)
color_adj='None'
#color_adj_to = cin[0]
color_adj_flag = (color_adj!='none') and (color_adj!='None') and (color_adj is not None)
color_adj_simple = (color_adj=='Simple') or color_adj=='simple'
color_adj_keep_ratio = 0.5
if color_adj_flag and (ctype=='vision'):
x_adj = []
for xi in x:
color_adj_f = color_adjust(ref_from=(xi+1)/2, ref_to=color_adj_to)
xi_adj = color_adj_f((xi+1)/2, keep=color_adj_keep_ratio, simple=color_adj_simple)
x_adj.append(xi_adj)
x = x_adj
else:
x = torch.clamp((x+1.0)/2.0, min=0.0, max=1.0)
x = [tvtrans.ToPILImage()(xi) for xi in x]
x[0].save('results/versatile_diffusion/subj{:02d}/roi/{}.png'.format(sub,im_id))